1
|
Spínola MP, Mendes AR, Prates JAM. Chemical Composition, Bioactivities, and Applications of Spirulina ( Limnospira platensis) in Food, Feed, and Medicine. Foods 2024; 13:3656. [PMID: 39594071 PMCID: PMC11593816 DOI: 10.3390/foods13223656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Spirulina (Limnospira platensis) is a microalga recognised for its rich nutritional composition and diverse bioactive compounds, making it a valuable functional food, feed, and therapeutic agent. This review examines spirulina's chemical composition, including its high levels of protein, essential fatty acids, vitamins, minerals, and bioactive compounds, such as the phycocyanin pigment, polysaccharides, and carotenoids, in food, feed, and medicine. These compounds exhibit various biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiviral, anticancer, antidiabetic and lipid-lowering effects. Spirulina's potential to mitigate oxidative stress, enhance immune function, and inhibit tumour growth positions it as a promising candidate for preventing chronic diseases. Additionally, spirulina is gaining interest in the animal feed sector as a promotor of growth performance, improving immune responses and increasing resistance to diseases in livestock, poultry, and aquaculture. Despite its well-documented health benefits, future research is needed to optimize production/cultivation methods, improve its bioavailability, and validate its efficacy (dose-effect relationship) and safety through clinical trials and large-scale human trials. This review underscores the potential of spirulina to address global health and nutrition challenges, supporting its continued application in food, feed, and medicine.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ana R. Mendes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Podgórska-Kryszczuk I. Spirulina-An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules 2024; 29:5387. [PMID: 39598773 PMCID: PMC11596570 DOI: 10.3390/molecules29225387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
With population growth expected in the near future and the planet's limited resources, alternative food sources are already being looked for. In this context, spirulina is called the food of the future due to its rich nutritional composition. This blue-green alga is primarily a valuable source of protein (55-70%) containing all essential amino acids. In its composition, it also contains unsaturated fatty acids, minerals, vitamins, and pigments, including the valuable protein-pigment complex-phycocyanin. Due to its high content of complete protein and minerals such as iron and calcium, it is an excellent addition to diets, especially those of vegans and vegetarians. Despite several limitations to the use of spirulina, including its distinctive marine flavour, low consumer awareness, or relatively high price, scientists are attempting to enrich many food products with the microalga. This is supported not only by the improved nutritional composition of the fortified product but also by spirulina's impact on sustainable food production. Therefore, this review aims to create consumer attention by presenting spirulina as a valuable and sustainable food source with health-promoting potential and great future significance.
Collapse
Affiliation(s)
- Izabela Podgórska-Kryszczuk
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
3
|
Morgan NR, Ramdas P, Bhuvanendran S, Radhakrishnan AK. Delineating the Immunotherapeutic Potential of Vitamin E and Its Analogues in Cancer: A Comprehensive Narrative Review. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5512422. [PMID: 39416707 PMCID: PMC11480965 DOI: 10.1155/2024/5512422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
Cancer is a disease resulting from uncontrolled cell division, which significantly contributes to human mortality rates. An alternative approach to cancer treatment, such as cancer immunotherapy, is needed as the existing chemotherapy and radiotherapy approaches target the cancer cells and healthy dividing cells. Vitamin E is a plant-derived lipid-soluble antioxidant with numerous health-promoting benefits, including anticancer and immunomodulatory properties. Vitamin E comprises eight natural isoforms: tocopherols (α, β, δ, and γ) and tocotrienols (α, β, δ, and γ). While initial research focused on the anticancer properties of α-tocopherol, there is growing interest in other natural forms and modified synthetic analogues of vitamin E due to their unique properties and enhanced anticancer effects. Hence, this review is aimed at outlining the effect of vitamin E and its analogues at various steps of the cancer-immunity cycle that can be used to stimulate anticancer immune responses.
Collapse
Affiliation(s)
- Nevvin Raaj Morgan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Ammu Kutty Radhakrishnan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
4
|
Chwil M, Mihelič R, Matraszek-Gawron R, Terlecka P, Skoczylas MM, Terlecki K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals (Basel) 2024; 17:1321. [PMID: 39458962 PMCID: PMC11510008 DOI: 10.3390/ph17101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0-71.3/46.0-63.0), carbohydrates (16.0-20.0/12.0-17.0), fats (0.9-14.2/6.4-14.3), polyphenolic compounds and phenols (7.3-33.2/7.8-44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises the research on the chemical profile, therapeutic effects in dermatological problems, application of Arthrospira and Spirulina microalgae, and contraindications to their use. The pro-health properties of these microalgae were analysed based on the relevant literature from 2019 to 2024. The antiviral mechanism of microalgal activity involves the inhibition of viral replication and enhancement of immunity. The anti-acne activity is attributed to alkaloids, alkanes, phenols, alkenes, phycocyanins, phthalates, tannins, carboxylic and phthalic acids, saponins, and steroids. The antibacterial activity generally depends on the components and structure of the bacterial cell wall. Their healing effect results from the inhibition of inflammatory and apoptotic processes, reduction of pro-inflammatory cytokines, stimulation of angiogenesis, and proliferation of fibroblasts and keratinocytes. The photoprotective action is regulated by amino acids, phlorotannins, carotenoids, mycosporins, and polyphenols inhibiting the production of tyrosinase, pro-inflammatory cytokines, and free oxygen radicals in fibroblasts and the stimulation of collagen production. Microalgae are promising molecular ingredients in innovative formulations of parapharmaceuticals and cosmetics used in the prophylaxis and therapy of dermatological problems. This review shows the application of spirulina-based commercial skin-care products as well as the safety and contraindications of spirulina use. Furthermore, the main directions for future studies of the pro-health suitability of microalgae exerting multidirectional effects on human skin are presented.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Rok Mihelič
- Department of Agronomy, University of Ljubljana, Jamnikarjeva 101 Street, 1000 Ljubljana, Slovenia;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Paulina Terlecka
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland;
| | - Michał M. Skoczylas
- Department of Basic Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H Street, 20-708 Lublin, Poland;
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Solidarności 8 Street, 20-841 Lublin, Poland;
| |
Collapse
|
5
|
Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. ACTA MATERIA MEDICA 2024; 3. [DOI: 10.15212/amm-2023-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer is the leading cause of morbidity and mortality worldwide and is an important barrier to lengthening life expectancy in every country. Natural products are receiving increased attention from researchers globally and increasing numbers of natural products are approved for clinical studies involving cancer in recent years. To gain more insight into natural products that have undergone clinical trials for cancer treatment, a comprehensive search was conducted. The https://clinicaltrials.gov website was searched for relevant clinical trials and natural product information up to December 2022. The search terms included different types of cancers, such as colorectal, lung, breast, gynecologic, kidney, bladder, melanoma, pancreatic, hepatocellular, gastric and haematologic. Then, PubMed and Web of Science were searched for relevant articles up to February 2024. Hence, we listed existing clinical trials about natural products used in the treatment of cancers and discussed the preclinical and clinical studies of some promising natural products and their targets, indications, and underlying mechanisms of action. Our intent was to provide basic information to readers who are interested or majoring in natural products and obtain a deeper understanding of the progress and actions of natural product mechanisms of action.
Collapse
|
6
|
Thaman J, Pal RS, Chaitanya MVNL, Yanadaiah P, Thangavelu P, Sharma S, Amoateng P, Arora S, Sivasankaran P, Pandey P, Mazumder A. Reconciling the Gap between Medications and their Potential Leads: The Role of Marine Metabolites in the Discovery of New Anticancer Drugs: A Comprehensive Review. Curr Pharm Des 2023; 29:3137-3153. [PMID: 38031774 DOI: 10.2174/0113816128272025231106071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
One-third of people will be diagnosed with cancer at some point in their lives, making it the second leading cause of death globally each year after cardiovascular disease. The complex anticancer molecular mechanisms have been understood clearly with the advent of improved genomic, proteomic, and bioinformatics. Our understanding of the complex interplay between numerous genes and regulatory genetic components within cells explaining how this might lead to malignant phenotypes has greatly expanded. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. Many popular anticancer drugs, including irinotecan, vincristine, etoposide, and paclitaxel, have botanical origins. Actinomycin D and mitomycin C come from bacteria, while bleomycin and curacin come from marine creatures. However, there is a lack of research evaluating the potential of algae-based anticancer treatments, especially in terms of their molecular mechanisms. Despite increasing interest in the former, and the promise of the compounds to treat tumours that have been resistant to existing treatment, pharmaceutical development of these compounds has lagged. Thus, the current review focuses on the key algal sources that have been exploited as anticancer therapeutic leads, including their biological origins, phytochemistry, and the challenges involved in converting such leads into effective anticancer drugs.
Collapse
Affiliation(s)
- Janvee Thaman
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144402, India
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144402, India
| | | | - Palakurthi Yanadaiah
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144402, India
| | - Prabha Thangavelu
- Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Affiliated to The Tamil Nadu Dr. MGR Medical University, Erode 638052, Tamil Nadu, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara 144402, India
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Ghana, Legon, Accra, Ghana
| | - Smriti Arora
- Department of Biotechnology, School of Allied Health Sciences, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Ponnusankar Sivasankaran
- Department of Pharmacy Practice, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Rocklands, Ooty 643001, Tamil Nadu, India
| | - Pratibha Pandey
- Department of Life Sciences, Noida Institute of Engineering & Technology, Gautam Buddh Nagar, 19, Knowledge Park-II, 22, Institutional Area, Greater Noida 201306, India
| | - Avijit Mazumder
- School of Pharmacy, Niet Pharmacy Institute c Block, Noida Institute of Engineering & Technology (Pharmacy Institute), 24 Gautam Buddh Nagar, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| |
Collapse
|
7
|
Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE -/- mice. J Nutr Biochem 2022; 110:109132. [PMID: 36028099 DOI: 10.1016/j.jnutbio.2022.109132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Polyphenols found in fruits and vegetables are associated with a reduced incidence of cardiovascular disease (CVD), the leading cause of death in the USA. Our lab demonstrated that blackberry supplementation reduces atherosclerosis in male, but not in female mice. The current study investigates whether gallic acid (GA), a polyphenol abundant in blackberry, decreases plaque and whether its effect is also sex-dependent. In vitro work using vascular smooth muscle cells (VSMCs) demonstrated that GA reduced cell signaling associated with proliferation, migration, and senescence. ApoE-/- male and female mice were treated with and without 0.2% GA in drinking water and fed a chow diet (2 weeks), then switched to high-fat diet (HFD) (5 weeks) with the same GA regimen. Similar to the blackberry study, GA reduced atherosclerosis only in males. This GA-induced plaque reduction was independent of plasma cholesterol, triglycerides (TG), LDL, or HDL but corresponded with indices of lower inflammation. Males showed reduced spleen weight and serum IL3 and IL12 levels, and gut health improvement. In females, GA increased anti-atherogenic (HDL and IL10) molecules, while upregulating several pro-inflammatory cytokines and chemokines, including tumor necrosis factor α (TNFα). A major sex-dependent effect of GA was the almost complete disappearance of Eubacterium fissicatena and Turicibacter induced by HFD in males, a finding not seen in females. This study provides novel insights into how GA can improve gut microbiota alterations associated with CVD and suggests that males suffering from atherosclerosis may benefit from GA supplementation, as this polyphenol partially restored microbiome dysbiosis.
Collapse
|
8
|
Zhao H, Guo X, Lei Y, Xia W, Cai F, Zhu D, An Y, Xi Y, Niu X, Wang Z, Yue T, Chen G. γ-Tocotrienol inhibits T helper 17 cell differentiation via the IL-6/JAK/STAT3 signaling pathway. Mol Immunol 2022; 151:126-133. [PMID: 36126500 DOI: 10.1016/j.molimm.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
γ-Tocotrienol (GT3), a member of the vitamin E family, is well known for its medicinal value in clinical treatments. However, the role of GT3 in T helper 17 (Th17)/regulatory T cell (Treg) differentiation and function is not fully understood. Here, we demonstrated that GT3 suppressed Th17 differentiation in vitro by inhibiting signal transducer and activator of transcription 3 (STAT3) phosphorylation in the interleukin 6 (IL-6)/Janus kinase (JAK)/STAT3 signaling pathway. GT3 also inhibited HIF1A expression in Th17 metabolism. Additionally, we showed that GT3 treatment inhibited disease aggravation in an imiquimod (IMQ)-induced psoriasis-like mouse model by reducing the percentage of Th17 cells in the spleen in vivo. The findings of this study demonstrated the effects of GT3 on Th17 cells through the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hanqing Zhao
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Wenjie Xia
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200052, China
| | - Feiyang Cai
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Dehao Zhu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China; Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang An
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Tao Yue
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200052, China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China.
| |
Collapse
|
9
|
Islam MS. Natural Products and Disease Prevention, Relief and Treatment. Nutrients 2022; 14:nu14122396. [PMID: 35745128 PMCID: PMC9228901 DOI: 10.3390/nu14122396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Research Building, Room 624, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
11
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|