1
|
Surono IS, Popov I, Verbruggen S, Verhoeven J, Kusumo PD, Venema K. Gut microbiota differences in stunted and normal-lenght children aged 36-45 months in East Nusa Tenggara, Indonesia. PLoS One 2024; 19:e0299349. [PMID: 38551926 PMCID: PMC10980242 DOI: 10.1371/journal.pone.0299349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/06/2024] [Indexed: 04/01/2024] Open
Abstract
The role of the gut microbiota in energy metabolism of the host has been established, both in overweight/obesity, as well as in undernutrition/stunting. Dysbiosis of the gut microbiota may predispose to stunting. The aim of this study was to compare the gut microbiota composition of stunted Indonesian children and non-stunted children between 36 and 45 months from two sites on the East Nusa Tenggara (ENT) islands. Fecal samples were collected from 100 stunted children and 100 non-stunted children in Kupang and North Kodi. The gut microbiota composition was determined by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. Moreover, fecal SCFA concentrations were analyzed. The microbiota composition was correlated to anthropometric parameters and fecal metabolites. The phyla Bacteroidetes (Bacteroidota; q = 0.014) and Cyanobacteria (q = 0.049) were significantly higher in stunted children. Three taxa at genus levels were consistently significantly higher in stunted children at both sampling sites, namely Lachnoclostridium, Faecalibacterium and Veillonella (q < 7 * 10-4). These and 9 other taxa positively correlated to the z-score length-for-age (zlen), while 11 taxa negatively correlated with zlen. Several taxa also correlated with sanitary parameters, some of which were also significantly different between the two groups. All three fecal SCFA concentrations (acetate, propionate and butyrate) and their total were lower in stunted children compared to non-stunted children, although not significant for butyrate, indicating lower energy-extraction by the gut microbiota. Also, since SCFA have been shown to be involved in gut barrier function, barrier integrity may be affected in the stunted children. It remains to be seen if the three taxa are involved in stunting, or are changed due to e.g. differences in diet, hygiene status, or other factors. The observed differences in this study do not agree with our previous observations in children on Java, Indonesia. There are differences in infrastructure facilities such as clean water and sanitation on ENT and Java, which may contribute to the differences observed. The role of the gut microbiota in stunting therefore requires more in depth studies. Trial registration: the trial was registered at ClinicalTrials.gov with identifier number NCT05119218.
Collapse
Affiliation(s)
- Ingrid S. Surono
- Faculty of Engineering, Food Technology Department, Bina Nusantara University, Jakarta, Indonesia
| | - Ilia Popov
- Faculty of Engineering, Food Technology Department, Bina Nusantara University, Jakarta, Indonesia
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| | - Pratiwi D. Kusumo
- Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| |
Collapse
|
2
|
Wang C, Chen W, Jiang Y, Xiao X, Zou Q, Liang J, Zhao Y, Wang Q, Yuan T, Guo R, Liu X, Liu Z. A synbiotic formulation of Lactobacillus reuteri and inulin alleviates ASD-like behaviors in a mouse model: the mediating role of the gut-brain axis. Food Funct 2024; 15:387-400. [PMID: 38099485 DOI: 10.1039/d3fo02663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Autism Spectrum Disorder (ASD), a complex neurodevelopmental disorder marked by social communication deficits and repetitive behaviors, may see symptom amelioration through gut microbiota modulation. This study investigates the effects of a synbiotic - specifically a probiotic amplified by prebiotic supplementation - on ASD-like mouse model's social deficiencies. This model was established via valproic acid injection into pregnant females. Post-weaning, male progeny received daily synbiotic treatment, a combination of Lactobacillus reuteri (L. reuteri) and inulin, for four weeks. Results indicated that the synbiotic rectified social impairments and attenuated inflammatory cytokine expressions in the brain. Moreover, synbiotic intervention protected gut barrier integrity and altered the gut microbiota composition, enhancing the butyrate-producing Bifidobacterium abundance. The synbiotic elevated metabolites such as butyrate and 3-hydroxybutyric acid (3-HB), alongside upregulated genes associated with 3-HB synthesis in the colon and liver, and brain receptors. Conclusively, the synbiotic combination of L. reuteri and inulin mitigated ASD-related social impairments, partially via their regulatory effect on the gut-brain axis.
Collapse
Affiliation(s)
- Chuanchuan Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yishan Jiang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiao Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiarui Liang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tian Yuan
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
3
|
Mazandarani M, Lashkarbolouk N, Ejtahed HS, Qorbani M. Does the ketogenic diet improve neurological disorders by influencing gut microbiota? A systematic review. Nutr J 2023; 22:61. [PMID: 37981693 PMCID: PMC10658738 DOI: 10.1186/s12937-023-00893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The aim of this systematic review is to evaluate the changes in gut microbiota (GM) induced by the Ketogenic Diets (KD) as a potential underlying mechanism in the improvement of neurological diseases. METHODS A comprehensive search was conducted on three electronic databases, including PubMed/Medline, Web of Science, and Scopus until December 2022. The inclusion criteria were studies that described any changes in GM after consuming KD in neurological patients. Full text of studies such as clinical trials and cohorts were added. The quality assessment of cohort studies was conducted using the Newcastle-Ottawa Quality Assessment Scale and for the clinical trials using the Cochrane Collaboration tool. The search, screening, and data extraction were performed by two researchers independently. RESULTS Thirteen studies examining the effects of the KD on the GM in neurological patients were included. Studies have shown that KD improves clinical outcomes by reducing disease severity and recurrence rates. An increase in Proteobacteria phylum, Escherichia, Bacteroides, Prevotella, Faecalibacterium, Lachnospira, Agaricus, and Mrakia genera and a reduction in Firmicutes, and Actinobacteria phyla, Eubacterium, Cronobacter, Saccharomyces, Claviceps, Akkermansia and Dialister genera were reported after KD. Studies showed a reduction in concentrations of fecal short-chain fatty acids and branched-chain fatty acids and an increase in beta Hydroxybutyrate, trimethylamine N-oxide, and N-acetylserotonin levels after KD. CONCLUSION The KD prescribed in neurological patients has effectively altered the GM composition and GM-derived metabolites.
Collapse
Affiliation(s)
- Mahdi Mazandarani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Narges Lashkarbolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Herrera-Mejía J, Campos-Vega R, Wall-Medrano A, Jiménez-Vega F. A Two-Step Single Plex PCR Method for Evaluating Key Colonic Microbiota Markers in Young Mexicans with Autism Spectrum Disorders: Protocol and Pilot Epidemiological Application. Diagnostics (Basel) 2023; 13:2387. [PMID: 37510132 PMCID: PMC10377852 DOI: 10.3390/diagnostics13142387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many neurological disorders have a distinctive colonic microbiome (CM) signature. Particularly, children with autism spectrum disorders (ASD) exhibit a very dissimilar CM when compared to neurotypical (NT) ones, mostly at the species level. Thus far, knowledge on this matter comes from high-throughput (yet very expensive and time-consuming) analytical platforms, such as massive high-throughput sequencing of bacterial 16S rRNA. Here, pure (260/280 nm, ~1.85) stool DNA samples (200 ng.µL-1) from 48 participants [39 ASD, 9 NT; 3-13 y] were used to amplify four candidate differential CM markers [Bacteroides fragilis (BF), Faecalibacterium prausnitzii (FP), Desulfovibrio vulgaris (DV), Akkermansia muciniphila (AM)], using micro-organism-specific oligonucleotide primers [265 bp (BF), 198 bp (FP), 196 bp (DV), 327 bp (AM)] and a standardized two-step [low (step 1: °Tm-5 °C) to high (stage 2: °Tm-0 °C) astringent annealing] PCR protocol (2S-PCR). The method was sensitive enough to differentiate all CM biomarkers in the studied stool donors [↑ abundance: NT (BF, FP, AM), ASD (DV)], and phylogenetic analysis confirmed the primers' specificity.
Collapse
Affiliation(s)
- Julián Herrera-Mejía
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Rocío Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Florinda Jiménez-Vega
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| |
Collapse
|
5
|
Prescott SL, Logan AC, Bristow J, Rozzi R, Moodie R, Redvers N, Haahtela T, Warber S, Poland B, Hancock T, Berman B. Exiting the Anthropocene: Achieving personal and planetary health in the 21st century. Allergy 2022; 77:3498-3512. [PMID: 35748742 PMCID: PMC10083953 DOI: 10.1111/all.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023]
Abstract
Planetary health provides a perspective of ecological interdependence that connects the health and vitality of individuals, communities, and Earth's natural systems. It includes the social, political, and economic ecosystems that influence both individuals and whole societies. In an era of interconnected grand challenges threatening health of all systems at all scales, planetary health provides a framework for cross-sectoral collaboration and unified systems approaches to solutions. The field of allergy is at the forefront of these efforts. Allergic conditions are a sentinel measure of environmental impact on human health in early life-illuminating how ecological changes affect immune development and predispose to a wider range of inflammatory noncommunicable diseases (NCDs). This shows how adverse macroscale ecology in the Anthropocene penetrates to the molecular level of personal and microscale ecology, including the microbial systems at the foundations of all ecosystems. It provides the basis for more integrated efforts to address widespread environmental degradation and adverse effects of maladaptive urbanization, food systems, lifestyle behaviors, and socioeconomic disadvantage. Nature-based solutions and efforts to improve nature-relatedness are crucial for restoring symbiosis, balance, and mutualism in every sense, recognizing that both personal lifestyle choices and collective structural actions are needed in tandem. Ultimately, meaningful ecological approaches will depend on placing greater emphasis on psychological and cultural dimensions such as mindfulness, values, and moral wisdom to ensure a sustainable and resilient future.
Collapse
Affiliation(s)
- Susan L Prescott
- Medical School, University of Western Australia, Nedlands, WA, Australia.,Nova Institute for Health, Baltimore, Maryland, USA.,ORIGINS Project, Telethon Kids Institute at Perth Children's Hospital, Nedlands, WA, Australia
| | - Alan C Logan
- Nova Institute for Health, Baltimore, Maryland, USA
| | | | - Ricardo Rozzi
- Cape Horn International Center (CHIC), University of Magallanes, Puerto Williams, Chile.,Philosophy and Religion, University of North Texas, Denton, Texas, USA
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Parkville, Vic., Australia
| | - Nicole Redvers
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sara Warber
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Trevor Hancock
- School of Public Health and Social Policy, University of Victoria, Victoria, BC, Canada
| | - Brian Berman
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Frolova M, Yudin S, Makarov V, Glazunova O, Alikina O, Markelova N, Kolzhetsov N, Dzhelyadin T, Shcherbakova V, Trubitsyn V, Panyukov V, Zaitsev A, Kiselev S, Shavkunov K, Ozoline O. Lacticaseibacillus paracasei: Occurrence in the Human Gut Microbiota and K-Mer-Based Assessment of Intraspecies Diversity. Life (Basel) 2021; 11:1246. [PMID: 34833122 PMCID: PMC8620312 DOI: 10.3390/life11111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Alignment-free approaches employing short k-mers as barcodes for individual genomes have created a new strategy for taxonomic analysis and paved a way for high-resolution phylogeny. Here, we introduce this strategy for the Lacticaseibacillus paracasei species as a taxon requiring barcoding support for precise systematics. Using this approach for phylotyping of L. paracasei VKM B-1144 at the genus level, we identified four L. paracasei phylogroups and found that L. casei 12A belongs to one of them, rather than to the L. casei clade. Therefore, we propose to change the specification of this strain. At the genus level we found only one relative of L. paracasei VKM B-1144 among 221 genomes, complete or available in contigs, and showed that the coding potential of the genome of this "rare" strain allows its consideration as a potential probiotic component. Four sets of published metagenomes were used to assess the dependence of L. paracasei presence in the human gut microbiome on chronic diseases, dietary changes and antibiotic treatment. Only antibiotics significantly affected their presence, and strain-specific barcoding allowed the identification of the main scenarios of the adaptive response. Thus, suggesting bacteria of this species for compensatory therapy, we also propose strain-specific barcoding for selecting optimal strains for target microbiomes.
Collapse
Affiliation(s)
- Maria Frolova
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Sergey Yudin
- Centre for Strategic Planning of Federal Medical-Biological Agency of Russia, 119121 Moscow, Russia; (S.Y.); (V.M.)
| | - Valentin Makarov
- Centre for Strategic Planning of Federal Medical-Biological Agency of Russia, 119121 Moscow, Russia; (S.Y.); (V.M.)
| | - Olga Glazunova
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Olga Alikina
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Natalia Markelova
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Nikolay Kolzhetsov
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Timur Dzhelyadin
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Viktoria Shcherbakova
- Laboratory of Anaerobic Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, 142290 Pushchino, Russia; (V.S.); (V.T.)
| | - Vladimir Trubitsyn
- Laboratory of Anaerobic Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, 142290 Pushchino, Russia; (V.S.); (V.T.)
| | - Valery Panyukov
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Alexandr Zaitsev
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Sergey Kiselev
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Konstantin Shavkunov
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Olga Ozoline
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| |
Collapse
|