1
|
Gajski G, Kašuba V, Milić M, Gerić M, Matković K, Delić L, Nikolić M, Pavičić M, Rozgaj R, Garaj-Vrhovac V, Kopjar N. Exploring cytokinesis block micronucleus assay in Croatia: A journey through the past, present, and future in biomonitoring of the general population. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503749. [PMID: 38575251 DOI: 10.1016/j.mrgentox.2024.503749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
In this study, we used the cytokinesis-block micronucleus (CBMN) assay to evaluate the background frequency of cytogenetic damage in peripheral blood lymphocytes of the general population concerning different anthropometric data and lifestyle factors. The background frequency of CBMN assay parameters was analysed in 850 healthy, occupationally non-exposed male and female subjects (average age, 38±11 years) gathered from the general Croatian population from 2000 to 2023. The mean background values for micronuclei (MNi) in the whole population were 5.3±4.3 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 0.7±1.3 and of nuclear buds (NBUDs) 3.1±3.2. The cut-off value, which corresponds to the 95th percentile of the distribution of 850 individual values, was 14 MNi, 3 NPBs, and 9 NBUDs. Results from our database also showed an association of the tested genomic instability parameters with age and sex but also with other lifestyle factors. These findings underscore the importance of considering several anthropometric and lifestyle factors when conducting biomonitoring studies. Overall, the normal and cut-off values attained here present normal values for the general population that can later serve as baseline values for further human biomonitoring studies either in Croatia or worldwide.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Katarina Matković
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Luka Delić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Maja Nikolić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Martina Pavičić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Ružica Rozgaj
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Bradley M, Melchor J, Carr R, Karjoo S. Obesity and malnutrition in children and adults: A clinical review. OBESITY PILLARS 2023; 8:100087. [PMID: 38125660 PMCID: PMC10728708 DOI: 10.1016/j.obpill.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023]
Abstract
Background In the U.S., children and adults are consuming more low-nutrient foods with added sugar and excess fats as compared to healthy, high-quality calories and micronutrients. This diet is increasing the prevalence of malnutrition and nutritional deficiencies, despite high calorie intake. This is a review of the common micronutrient deficiencies, the risk factors for malnutrition, dietary plans, and the health consequences in children and adults with obesity in the U.S. Methods This clinical review of literature was performed on the MEDLINE (PubMed) search engine. A total of 1391 articles were identified and after review, a total of 130 were found to be most pertinent. Discussion The most common micronutrient deficiencies found in patients with obesity were vitamin A, thiamine (B1), folate (B9), cobalamin (B12), vitamin D, iron, calcium, and magnesium, especially prior and after bariatric surgery. Diets that produced the most weight reduction also further puts these individuals at risk for worsening malnutrition. Malnutrition and micronutrient deficiencies can worsen health outcomes if not properly managed. Conclusion Adequate screening and awareness of malnutrition can improve the health outcomes in patients with obesity. Physiologic changes in response to increased adiposity and inadequate intake increase this population's risk of adverse health effects. Malnutrition affects the individual and contributes to worse public health outcomes. The recommendations for screening for malnutrition are not exclusive to individuals undergoing bariatric procedures and can improve the health outcomes of any patient with obesity. However, clearly, improved nutritional status can assist with metabolism and prevent adverse nutritional outcomes post-bariatric surgery. Clinicians should advise on proper nutrition and be aware of diets that worsen deficiencies.
Collapse
Affiliation(s)
- Morgan Bradley
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
| | - Julian Melchor
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
| | - Rachel Carr
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
| | - Sara Karjoo
- Florida State University College of Medicine, 1115 W Call St, Tallahassee, FL, 32304, USA
- Johns Hopkins All Children's Hospital, 601 5th St. S. Suite 605, St. Petersburg, FL, 33701, USA
- University of South Florida Morsani College of Medicine, 560 Channelside Drive MDD 54, Tampa, FL, 33602, USA
| |
Collapse
|
3
|
Foss-Freitas MC, Besci Ö, Meral R, Neidert A, Chenevert TL, Oral EA, Rothberg AE. A Very-Low-Calorie Diet Can Cause Remission of Diabetes Mellitus and Hypertriglyceridemia in Familial Partial Lipodystrophy. Obes Facts 2023; 17:103-108. [PMID: 37952526 PMCID: PMC10836931 DOI: 10.1159/000533992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 11/14/2023] Open
Abstract
There is no strong evidence that any specific diet is the preferred treatment for lipodystrophy syndromes. Here we remark on the benefits of a very-low-calorie diet (VLCD) in a patient with familial partial lipodystrophy type 2 (FPLD2). A 38-year-old female diagnosed with FPLD2, with a history of multiple comorbidities, underwent 16 weeks of VLCD with a short-term goal of improving her metabolic state rapidly to achieve pregnancy by in vitro fertilization (IVF). We observed a reduction of 12.3 kg in body weight and 1.4% in hemoglobin A1c. The decrease in the area under the curves of insulin (-33.2%), triglycerides (-40.7%), and free fatty acids (-34%) were very remarkable. Total body fat was reduced by 16%, and liver fat by 80%. Her egg retrieval rate and quality during IVF were far superior to past hyperstimulation. Our data encourage the use of this medical approach for other patients with similar metabolic and reproductive abnormalities due to adipose tissue insufficiency.
Collapse
Affiliation(s)
- Maria C Foss-Freitas
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA,
| | - Özge Besci
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | - Rasimcan Meral
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Neidert
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E Rothberg
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
5
|
Milić M, Ožvald I, Matković K, Radašević H, Nikolić M, Božičević D, Duh L, Matovinović M, Bituh M. Combined Approach: FFQ, DII, Anthropometric, Biochemical and DNA Damage Parameters in Obese with BMI ≥ 35 kg m -2. Nutrients 2023; 15:899. [PMID: 36839257 PMCID: PMC9958661 DOI: 10.3390/nu15040899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Although obesity with its comorbidities is linked with higher cancer risk, the data on genome stability in the obese/severely obese are scarce. This is the first study with three DNA damage assessment assays (Fpg-modified and alkaline comet assays and micronucleus cytome assay) performed on a severely obese population (n = 53) where the results were compared with daily intake of food groups, nutrient intake, dietary inflammatory index (DII), and anthropometric and biochemical parameters usually measured in obese individuals. Results demonstrated the association between DNA damage levels and a decrease in cell proliferation with anthropometric measurements and the severity of obese status, together with elevated levels of urates, inorganic phosphates, chlorides, and hs troponin I levels. DII was connected with oxidative DNA damage, while BMI and basal metabolic rate (BMR) were associated with a decrease in cell proliferation and DNA damage creation. Measured daily BMR and calculated daily energy intake from the food frequency questionnaire (FFQ) demonstrated no significant difference (1792.80 vs. 1869.86 kcal day-1 mean values). Groups with higher DNA damage than expected (tail intensity in comet assay >9% and >12.4%, micronucleus frequency >13), consumed daily, weekly, and monthly more often some type of food groups, but differences did not show a clear influence on the elevated DNA damage levels. Combination of all three DNA damage assays demonstrated that some type of damage can start earlier in the obese individual lifespan, such as nuclear buds and nucleoplasmic bridges, then comes decrease in cell proliferation and then elevated micronucleus frequencies, and that primary DNA damage is not maybe crucial in the overweight, but in severely obese. Biochemically changed parameters pointed out that obesity can have an impact on changes in blood cell counts and division and also on genomic instability. Assays were able to demonstrate groups of sensitive individuals that should be further monitored for genomic instability and cancer prevention, especially when obesity is already connected with comorbidities, 13 different cancers, and a higher mortality risk with 7-10 disease-free years loss. In the future, both DNA damage and biochemical parameters should be combined with anthropometric ones for further obese monitoring, better insight into biological changes in the severely obese, and a more individual approach in therapy and treatment. Patients should also get a proper education about the foodstuff with pro- and anti-inflammatory effect.
Collapse
Affiliation(s)
- Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10001 Zagreb, Croatia
| | - Ivan Ožvald
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
- Neuropsychiatric Hospital dr. Ivan Barbot of Popovača, 44317 Popovača, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10001 Zagreb, Croatia
| | - Hrvoje Radašević
- Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
| | - Maja Nikolić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10001 Zagreb, Croatia
| | - Dragan Božičević
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Lidija Duh
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Martina Matovinović
- Department of Internal Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Martina Bituh
- Laboratory for Food Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|