1
|
Vidyadharan VA, Betancourt A, Smith C, Blesson CS, Yallampalli C. Maternal Low-Protein Diet Leads to Mitochondrial Dysfunction and Impaired Energy Metabolism in the Skeletal Muscle of Male Rats. Int J Mol Sci 2024; 25:12860. [PMID: 39684571 DOI: 10.3390/ijms252312860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
A prenatal low-protein (LP) diet disrupts glucose homeostasis in adult offspring. Skeletal muscles are one of the main sites of glucose clearance, and mitochondria residing in the muscle fibers are central to glucose homeostasis. Our previous studies indicated that impaired mitochondrial health is central to dysregulated glucose metabolism in the gastrocnemius muscle of the LP-programmed female rats. In addition, dysfunctional mitochondria are often an indicator of underlying irregularities in energy metabolism and metabolic inflexibility. Therefore, this study examined the mitochondrial function and metabolic flexibility in the skeletal muscles of prenatal LP-programmed adult male rats. Pregnant Wistar rats were randomly allotted to a control diet (20% protein) or an isocaloric LP diet (6% protein). Standard laboratory rat chow was given to the dams and the pups after delivery and weaning. Gene and protein expressions, mtDNA copy number, and electron microscopy were assessed in gastrocnemius (GS) muscle, and the mitochondrial oxygen consumption rate was determined using isolated flexor digitorum brevis muscle fibers. The genes associated with mitochondrial outer membrane fusion, mitofusin1 and 2 (Mfn1 and Mfn2), fission (Fis1), and biogenesis (Pgc1B, Nrf1, and Esrra) were lower in the LP group. Further, our functional studies showed that the ATP-linked oxygen consumption rate (OCR), maximal, spare respiratory, and non-mitochondrial respiration-associated OCRs were lower in the LP rats. Further, the mRNA and protein expressions of Ndufb8, a key factor involved in the complex-I catalytic activity, were downregulated in the LP group. In addition, the expression of genes linked to mitochondrial pyruvate transport (Mpc1) and metabolism (Pdha1) was lower in the LP group. In contrast, the expression of mitochondrial fatty acid transporters (Cpt1a and Cpt2) was higher in the LP when compared to the control group. However, electron microscopic analysis exhibited no difference in the mitochondrial ultrastructure in the LP muscle compared to the control. Altogether, our results indicate that the LP diet affects the mitochondrial complex-I integrity and dynamics and leads to altered expression of genes associated with substrate oxidation and mitochondrial dysfunction in the skeletal muscle of the male LP offspring.
Collapse
Affiliation(s)
- Vipin A Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Pani S, Senapati U, Pati B, Sahu B, Swalsingh G, Pani P, Rout S, Achary KG, Bal NC. Developmental dynamics of mitochondrial fission and fusion proteins in functionally divergent skeletal muscles of goat. Physiol Rep 2024; 12:e16002. [PMID: 38831632 PMCID: PMC11148127 DOI: 10.14814/phy2.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024] Open
Abstract
During skeletal muscle development, the intricate mitochondrial network formation relies on continuous fission and fusion. This process in larger mammals differs from rodents, the most used animal models. However, the expression pattern of proteins regulating mitochondrial dynamics in developing skeletal muscle remains unexplored in larger mammals. Therefore, we characterized the cellular expression and tissue-level distribution of these proteins during development taking goat as a model. We have performed histological and immunohistochemical analyses to study metabolic features in various muscles. Neonatal muscles display uniform distribution of mitochondrial activity. In contrast, adult muscles exhibit clear distinctions based on their function, whether dedicated for posture maintenance or facilitating locomotion. Mitochondrial fission proteins like DRP-1, MFF, and fusion proteins like MFN-1 and 2 are abundantly expressed in neonatal muscles. Fission proteins exhibit drastic downregulation with limited peripheral expression, whereas fusion proteins continue to express in a fiber-specific manner during adulthood. Locomotory muscles exhibit different fibers based on mitochondrial activity and peripheralization with high SDH activity. The proximity ligation assay between MFN1 and MFN2 demonstrates that their interaction is restricted to subsarcolemmal mitochondria in adult fibers while distributed evenly in neonatal fibers. These differences between postural and locomotory muscles suggest their physiological and metabolic properties are different.
Collapse
Grants
- ECR/ 2016/001247 DST | Science and Engineering Research Board (SERB)
- BT/RLF/Re-entry/41/2014 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- BT/PR28935/MED/30/2035/2018 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- 45/3/2019/PHY/BMS Indian Council of Medical Research (ICMR)
- 45/9/2020-PHY/BMS Indian Council of Medical Research (ICMR)
- 09/1035(0011)/2017-EMR-I CSIR | Human Resource Development Group (HRDG)
- DST/INSPIRE Fellowship/2018/IF180892 Department of Science and Technology, Ministry of Science and Technology, India (DST)
- DST | Science and Engineering Research Board (SERB)
- Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- Indian Council of Medical Research (ICMR)
- CSIR | Human Resource Development Group (HRDG)
- Department of Science and Technology, Ministry of Science and Technology, India (DST)
Collapse
Affiliation(s)
- Sunil Pani
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Unmod Senapati
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Benudhara Pati
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | | | | | - Punyadhara Pani
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Subhasmita Rout
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | | | - Naresh C. Bal
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| |
Collapse
|
3
|
Vidyadharan VA, Blesson CS, Tanchico D, Betancourt A, Smith C, Yallampalli C. Low Protein Programming Causes Increased Mitochondrial Fusion and Decreased Oxygen Consumption in the Hepatocytes of Female Rats. Nutrients 2023; 15:1568. [PMID: 37049409 PMCID: PMC10097083 DOI: 10.3390/nu15071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The liver is one of the major organs involved in the regulation of glucose and lipid homeostasis. The effectiveness of metabolic activity in hepatocytes is determined by the quality and quantity of its mitochondria. Mitochondrial function is complex, and they act via various dynamic networks, which rapidly adapt to changes in the cellular milieu. Our present study aims to investigate the effects of low protein programming on the structure and function of mitochondria in the hepatocytes of adult females. Pregnant rats were fed with a control or isocaloric low-protein diet from gestational day 4 until delivery. A normal laboratory chow was given to all dams after delivery and to pups after weaning. The rats were euthanized at 4 months of age and the livers were collected from female offspring for investigating the mitochondrial structure, mtDNA copy number, mRNA, and proteins expression of genes associated with mitochondrial function. Primary hepatocytes were isolated and used for the analysis of the mitochondrial bioenergetics profiles. The mitochondrial ultrastructure showed that the in utero low-protein diet exposure led to increased mitochondrial fusion. Accordingly, there was an increase in the mRNA and protein levels of the mitochondrial fusion gene Opa1 and mitochondrial biogenesis genes Pgc1a and Essra, but Fis1, a fission gene, was downregulated. Low protein programming also impaired the mitochondrial function of the hepatocytes with a decrease in basal respiration ATP-linked respiration and proton leak. In summary, the present study suggests that the hepatic mitochondrial dysfunction induced by an in utero low protein diet might be a potential mechanism linking glucose intolerance and insulin resistance in adult offspring.
Collapse
Affiliation(s)
- Vipin A. Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S. Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Daren Tanchico
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Amorín R, Liu L, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Maternal diet induces persistent DNA methylation changes in the muscle of beef calves. Sci Rep 2023; 13:1587. [PMID: 36709351 PMCID: PMC9884291 DOI: 10.1038/s41598-023-28896-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Maternal nutrition during pregnancy can induce epigenetic alterations in the fetal genome, such as changes in DNA methylation. It remains unclear whether these epigenetic alterations due to changes in maternal nutrition are transitory or persist over time. Here, we hypothesized that maternal methionine supplementation during preconception and early pregnancy could alter the fetal epigenome, and some of these alterations could persist throughout different developmental stages of the offspring. Beef cows were randomly assigned to either a control or a methionine-rich diet from - 30 to + 90 d, relative to the beginning of the breeding season. The methylome of loin muscle from the same bull calves (n = 10 per maternal diet) at 30 and 200 days of age were evaluated using whole-genome bisulfite sequencing. Notably, a total of 28,310 cytosines showed persistent methylation differences over time between maternal diets (q-value < 0.10, methylation change > 20%). These differentially methylated cytosines were in the transcription start sites, exons, or splice sites of 341 annotated genes. Over-representation analysis revealed that these differentially methylated genes are involved in muscle contraction, DNA and histone methylation, mitochondrial function, reactive oxygen species homeostasis, autophagy, and PI3K signaling pathway, among other functions. In addition, some of the persistently, differentially methylated cytosines were found in CpG islands upstream of genes implicated in mitochondrial activities and immune response. Overall, our study provides evidence that a maternal methionine-rich diet altered fetal epigenome, and some of these epigenetic changes persisted over time.
Collapse
Affiliation(s)
- Rocío Amorín
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL, 33865, USA
| | - Nicolás DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32351, USA
| | - Phillip A Lancaster
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.
| |
Collapse
|