1
|
Gu J, Huang H, Liang J, Liao Q, Tang P, Tang Y, Long J, Chen J, Huang D, Pan D, Zeng X, Qiu X. Impact of Maternal Exposure to Trace Metal Mixtures on Bone Mineral Density in Children Aged 3-6: Results from the Guangxi Zhuang Birth Cohort, China. Biol Trace Elem Res 2025:10.1007/s12011-025-04561-w. [PMID: 40025404 DOI: 10.1007/s12011-025-04561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Prospective studies examining early maternal exposure to trace metal (TM) mixtures and their effects on offspring remain limited. We analyzed data regarding maternal plasma trace metal concentrations and bone mineral density (BMD) for 220 children aged 3-6 years from the Guangxi Zhuang Birth Cohort. Inductively coupled plasma-mass spectrometry was used to measure 22 trace metal concentrations-Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Cs, Ba, W, Tl, Pb, and U-in maternal plasma samples collected before 13 weeks of gestation. BMD Z-scores in children were assessed using quantitative ultrasound. Generalized linear models, restricted cubic spline (RCS) models, principal component analysis, Bayesian kernel machine regression, and quantile-based g-computation (qgcomp) were used to evaluate the associations between maternal plasma metal levels and BMD Z-scores in the child. Higher maternal Fe concentration was correlated with lower child BMD Z-scores (β [95% confidence interval]: - 1.374 [- 2.426 to - 0.323], p = 0.011). Increased Pb exposure was correlated with higher Z-scores (β [95% CI]: 1.035 [0.150-1.920], p = 0.023), corroborated by the RCS model (p = 0.031). Ti levels exceeding the median were associated with increased BMD Z-scores (p = 0.027). Increased BMD in children was associated with higher levels of metal mixtures, including Mn, V, Ti, U, Ni, Zn, Sr, Pb, W, and Co. Pb appears to play a primary role in this effect. TM exposure during early pregnancy is associated with BMD in children; however, additional longitudinal and experimental studies are required to confirm this conclusion.
Collapse
Affiliation(s)
- Junwang Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
- Department of Epidemiology and Health Statistics, School of Public Health and Health Management, Gannan Medical University, 341000, Ganzhou, Jiangxi, China
| | - Huishen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Peng Tang
- Department of Maternal and Child Health, School of Public Health, Peking University, 100191, Beijing, China
| | - Ying Tang
- Department of Microbiology, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Jiehua Chen
- Department of Microbiology, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Dongping Huang
- Department of Microbiology, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Wang S, Zhao X, Zhou R, Jin Y, Wang X, Ma X, Lu X. The influence of adult urine lead exposure on bone mineral densit: NHANES 2015-2018. Front Endocrinol (Lausanne) 2024; 15:1412872. [PMID: 39415791 PMCID: PMC11482520 DOI: 10.3389/fendo.2024.1412872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Previous studies have indicated that exposure to heavy metals related to bone health is primarily limited to some common harmful metals, and the impact of lead has not been fully understood. This study aims to explore the relationship between urine lead exposure and bone density. Methods 1,310 adults were included from the NHANES database (2015-2018), and through generalized linear regression analysis and constrained cubic spline models, the association between lead levels and total bone density as well as lumbar spine bone density was explored. The study also examined the impact of combined exposure to lead and cadmium on bone density. Results and conclusions Urinary lead levels were significantly negatively correlated with total bone mineral density (β: -0.015; 95%CI: -0.024, -0.007) and lumbar spine bone mineral density (β: -0.019; 95%CI: -0.031, -0.006). Compared to the lowest three quartiles of lead levels, the adjusted odds ratios for T3 changes in total bone mineral density and lumbar spine bone mineral density were 0.974 (95%CI: 0.959, 0.990) and 0.967 (95%CI: 0.943, 0.991), indicating a significant negative trend. Further analysis with constrained cubic spline models revealed a non-linear decreasing relationship between urinary lead and total bone mineral density as well as lumbar spine bone mineral density. Stratified analyses suggested that the relationship between urinary lead levels and bone mineral density might be significantly influenced by age, while gender showed no significant impact on the relationship. Moreover, combined exposure to lead and cadmium was found to be associated with decreased bone mineral density, emphasizing the potential synergistic effects between lead and cadmium on bone health. However, the specific mechanisms of lead and its effects on different populations require further comprehensive research. This study provides valuable insights for further exploration and development of relevant public health policies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Lu
- Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Kong H, He Z, Li H, Xing D, Lin J. The Association between Fluoride and Bone Mineral Density in US Children and Adolescents: A Pilot Study. Nutrients 2024; 16:2948. [PMID: 39275266 PMCID: PMC11397378 DOI: 10.3390/nu16172948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
The aim of this study was to examine the association between fluoride exposure and bone mineral density (BMD) in children and adolescents. We used data from the National Health and Nutrition Examination Survey (NHANES) 2015-2016. The fluoride concentrations in the water samples, plasma samples, and urine samples were measured electrometrically using an ion-specific electrode. Total body less head BMD (TBLH BMD) was measured using dual-energy X-ray absorptiometry (DXA). Weighted generalized linear regression models and restricted cubic splines (RCS) regression models were used to analyze the relationships between the three types of fluoride exposure and TBLH BMD. We performed subgroup analyses stratified by sex. A total of 1413 US children and adolescents were included in our study. In our linear regression models, we found inverse associations between fluoride concentrations in water and plasma and TBLH BMD. Additionally, we discovered a non-linear association between fluoride concentrations in water and plasma and TBLH BMD. No significant association or non-linear relationship was found between urine fluoride levels and TBLH BMD. This nationally representative sample study provides valuable insight into the intricate connection between fluoride exposure and skeletal health in children and adolescents.
Collapse
Affiliation(s)
- Haichen Kong
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Zihao He
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Hui Li
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Dan Xing
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianhao Lin
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| |
Collapse
|
4
|
Wang D, Zhang Y, He Y, Song F, Tang Y, Chen L, Wang Y, Yang F, Yao X. Associations of Perchlorate, Nitrate, and Thiocyanate with Bone Mineral Density in the US General Population: A Multi-Cycle Study of NHANES 2011-2018. Nutrients 2024; 16:2658. [PMID: 39203795 PMCID: PMC11487404 DOI: 10.3390/nu16162658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are widely recognized as endocrine disrupting chemicals, which are closely related to thyroid function. Animal and human studies show a correlation between thyroid hormone and bone mineral density (BMD). However, it remains unknown whether perchlorate, nitrate, and thiocyanate were associated with BMD. This study aimed to explore the association between perchlorate, nitrate, and thiocyanate exposure with BMD. METHOD A cross-sectional analysis among 5607 participants from the 2011-2018 National Health and Nutrition Examination Survey (NHANES) was conducted in the present study. Perchlorate, nitrate, and thiocyanate were detected in urine by ion chromatography. Survey-weighted generalized linear regression, restricted cubic splines, and qgcomp models were used to assess the association of BMDs with single and mixed perchlorate, nitrate, and thiocyanate exposures. In addition, age, gender, and BMI stratified these associations. RESULTS Negative associations were found between perchlorate and nitrate with BMDs. Furthermore, based on the qgcomp model results, the combined association of perchlorate, nitrate, and thiocyanate exposure was negatively associated with BMDs (β = -0.017, 95% CI: -0.041, -0.024 for total BMD; β = -0.017, 95% CI: -0.029, -0.005 for lumbar BMD). Additionally, there was a significant effect after gender, age, and BMI stratification between perchlorate, nitrate, and thiocyanate with BMDs in the normal weight group (β = -0.015, 95% CI: -0.020, -0.011 for total BMD; β = -0.022, 95% CI: -0.028, -0.016 for lumbar BMD) and children and adolescents group (β = -0.025, 95% CI: -0.031, -0.019 for total BMD; β -0.017, 95% CI: -0.029, -0.005 for lumbar BMD). CONCLUSIONS The present study indicated a negative correlation between BMDs and urinary perchlorate, nitrate, and thiocyanate levels, with nitrate being the main contributor to the mixture effect. People with normal weight and children and adolescents were more likely to be affected.
Collapse
Affiliation(s)
- Donglan Wang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Ying Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Yayu He
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Fengmei Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Yan Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Limou Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Yangcan Wang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
| | - Fei Yang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Xueqiong Yao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China (Y.H.)
- Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421009, China
| |
Collapse
|
5
|
Cui A, Yan J, Zeng Y, Shi B, Cheng L, Deng H, Wei X, Zhuang Y. Association between composite dietary antioxidant and bone mineral density in children and adolescents aged 8-19 years: findings from NHANES. Sci Rep 2024; 14:15849. [PMID: 38982172 PMCID: PMC11233598 DOI: 10.1038/s41598-024-66859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
Dietary antioxidants may have beneficial effects on bone health, but it remains uncertain in children and adolescents. This study investigates the association of composite dietary antioxidant index (CDAI) with bone mineral density (BMD) in children and adolescents aged 8-19 years from the National Health and Nutrition Examination Survey (NHANES) 2007-2010. The study assessed the relationship between CDAI and BMD in 2994 individuals aged 8-19 years (average age 13.48 ± 3.32 years) from the NHANES 2007-2010. Multivariate linear regression analyses were utilized to detect the association between CDAI and total spine, femur neck, and total femur BMD, adjusting for confounders including age, race/ethnicity, sex, poverty income ratio (PIR), body mass index (BMI), serum phosphorus and calcium. Stratified analyses and interaction tests were performed to examine the stability of the results. The weighted characteristics showed that subjects in the fourth CDAI quartile were more likely to be older, men, and Non-Hispanic White. They have higher values of serum total calcium and phosphorus. After adjusting all confounders, CDAI was positively associated with the total spine (β = 0.0031 95% CI 0.0021-0.0040), total femur (β = 0.0039 95% CI 0.0028-0.0049), and femur neck BMD (β = 0.0031 95% CI 0.0021-0.0040) in children and adolescents. Furthermore, we found no interaction effects between different race/ethnicity, age, and sex groups. Our findings suggest that dietary intake of multiple antioxidants was positively associated with BMD in children and adolescents. These findings provide valuable evidence for improving bone health in the early stages of life. However, more prospective studies are required to validate our findings and their causal relationship.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Juan Yan
- Department of Medical Services Section, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shen'zhen, 518107, China
| | - Yuan Zeng
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Baoqiang Shi
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Cheng
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hongli Deng
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Xing Wei
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Yan Zhuang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| |
Collapse
|
6
|
Liu H, Bao M, Liu M, Deng F, Wen X, Wan P, Lin X, Dong G, Li Z, Han J. The Association between Serum Copper and Bone Mineral Density among Adolescents Aged 12 to 19 in the United States. Nutrients 2024; 16:453. [PMID: 38337737 PMCID: PMC10857197 DOI: 10.3390/nu16030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Bone mineral density (BMD) is a key parameter widely used in the assessment of bone health. Although many investigations have explored the relationship between trace elements and BMD, there are fewer studies focused on serum copper and BMD, especially for adolescents. Using data extracted from the National Health and Nutrition Examination Survey, we applied a multiple-linear regression and smooth curve fitting to assess the relationship between serum copper and BMD. A total of 910 participants were finally included in this study. After adjusting for relevant covariates, serum copper was negatively associated with lumbar spine BMD (β = -0.057, 95% CI: -0.109 to -0.005), trunk bone BMD (β = -0.068, 95% CI: -0.110 to -0.026), pelvis BMD (β = -0.085, 95% CI: -0.145 to -0.024), subtotal BMD (β = -0.072, 95% CI: -0.111 to -0.033), and total BMD (β = -0.051, 95% CI: -0.087 to -0.016) (p < 0.05). In quartile analysis, the highest level of serum copper was associated with decreased BMD when compared with those at the lowest quartile (p < 0.05). The stratified analysis revealed a significant interaction between age and the effects of serum copper on trunk bone BMD (p = 0.022) and pelvis BMD (p = 0.018). Meanwhile, the higher level of serum copper was negatively associated with BMD in males, and gender modified the relationship (p < 0.001). Future longitudinal studies will be necessary for a more definitive interpretation of our results.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
| | - Mian Liu
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
| | - Ping Wan
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
| | - Guoqiang Dong
- Institute of Industrial Hygiene of Ordance Industry, Xi’an 710065, China;
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (H.L.); (M.B.); (F.D.); (X.W.); (P.W.); (X.L.)
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
- Global Health Institute, Health Science Center, Xi’an Jiaotong University, Xi’an 712000, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
7
|
Sun Y, Wang YX, Liu C, Mustieles V, Pan XF, Zhang Y, Messerlian C. Exposure to Trihalomethanes and Bone Mineral Density in US Adolescents: A Cross-Sectional Study (NHANES). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21616-21626. [PMID: 38091484 DOI: 10.1021/acs.est.3c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Animal and human studies have suggested that trihalomethane (THM) has toxicity to bone. In this study, we included adolescents from the National Health and Nutrition Examination Survey who had quantified blood and tap water THM concentrations [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and lumbar spine or total body less head (TBLH) bone mineral density (BMD). A 2.7-fold increase in concentrations of blood TCM, DBCM, chlorinated THMs (the sum of TCM, BDCM, and DBCM), and total THMs (the sum of 4 THMs) was associated with lower lumbar spine BMD z-scores by -0.06 [95% confidence interval (CI): -0.12, -0.01], -0.06 (95% CI: -0.11, -0.003), -0.08 (95% CI: -0.14, -0.02), and -0.07 (95% CI: -0.13, -0.003), respectively, in adjusted models. Similarly, a 2.7-fold increase in blood BDCM, DBCM, and chlorinated THM concentrations was associated with lower TBLH BMD z-scores by -0.10 (95% CI: -0.17, -0.02), -0.10 (95% CI: -0.17, -0.03), and -0.11 (95% CI: -0.20, -0.01), respectively. Low-to-moderate predictive power was attained when tap water THM concentrations were used to predict blood THM measurements. Notably, the inverse associations for blood THMs persisted exclusively between water concentrations of DBCM and Br-THMs and the TBLH BMD z-scores. Our findings suggest that exposure to THMs may adversely affect the adolescent BMD.
Collapse
Affiliation(s)
- Yang Sun
- Department of Otolaryngology-Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016,Spain
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012,Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, China
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Zhang J, Mai Q, Di D, Zhou H, Zhang R, Wang Q. Potential roles of gut microbiota in metal mixture and bone mineral density and osteoporosis risk association: an epidemiologic study in Wuhan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117201-117213. [PMID: 37864687 DOI: 10.1007/s11356-023-30388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Few studies have focused on the effects of multiple metal mixtures on bone health and the underlying mechanisms related to alterations in the gut microbiota. This study aimed to examine the potential roles of gut microbiota alterations in metal mixtures and their association with osteoporosis traits. Adults aged ≥ 55 years were recruited from two community healthcare centers in Wuhan City during 2016-2019. The plasma concentrations of six metals (zinc, iron, selenium, lead, cadmium, and arsenic) were measured using an inductively coupled plasma mass spectrometer. The k-means clustering method was employed to explore the exposure profiles of metal mixtures for all participants. 16S rRNA gene sequencing was used to profile the gut microbiota of participants. Combining these results with those of our previous study, we identified overlapping taxa and evaluated their potential roles. A total of 806 participants (516 females), with an average age of 67.36 years were included. The participants were grouped into three clusters using k-means clustering: Cluster 1 (n = 458), Cluster 2 (n = 199), and Cluster 3 (n = 149). The high-exposure group for iron, zinc, lead, and cadmium (Cluster 3) showed a negative association with lumbar spine 1-4 bone mineral density (BMD). A total of 201 individuals (121 females) underwent sequencing of the gut microbiota. Both alpha and beta diversities were statistically different among the three groups. Bacteroidaceae, Lachnospiraceae, Bifidobacteriaceae, Bacteroides, and Lachnospiraceae_incertae_sedis were identified as overlapping taxa associated with the metal mixtures and BMD. Interaction analysis revealed that Cluster 3 interacted with Bacteroidaceae/Bacteroides, resulting in a positive effect on LS1-4 BMD (β = 0.358 g/cm2, 95% CI: 0.047 to 0.669, P = 0.025). Our findings indicate associations between multiple metal mixtures and BMD as well as gut microbiota alterations. Exploring the interaction between metal mixtures and the gut microbiota provides new perspectives for the precise prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Mai
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Lu J, Hu L, Guo L, Peng J, Wu Y. The Effects of Claw Health and Bone Mineral Density on Lameness in Duroc Boars. Animals (Basel) 2023; 13:ani13091502. [PMID: 37174539 PMCID: PMC10177061 DOI: 10.3390/ani13091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate the effects of claw lesion types and bone mineral density on lameness in boars, the data of claw lesion score, gait score, and bone mineral density, measured by a Miniomin ultrasound bone densitometer, were collected from a total of 739 Duroc boars. Firstly, we discovered that the prevalence of claw lesions was as high as 95.26% in boars. The percentage of lameness of boars with SWE was higher than those with other claw lesions. Meanwhile, the results showed that the probability of lameness was higher in boars with lower bone mineral density (p < 0.05). Logistic regression models, including variables of boar age, body weight, serum mineral level, and housing type, were used to identify the influencing factors of bone mineral density in this study. The results found that bone mineral density increases with age before reaching a maximum value at 43 months of age, and begins to decrease after 43 months of age. Elevated serum Ca levels were significantly associated with an increase in bone mineral density (p < 0.05). Aside from the above findings, we also made an interesting discovery that boars in the individual pen model significantly increased bone mineral density compared to those in the individual stall model. In conclusion, claw lesions and bone mineral density were significantly associated with lameness. Age, serum Ca, and housing type are the potential influencing factors for bone mineral density in boars.
Collapse
Affiliation(s)
- Jinxin Lu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yinghui Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Liu J, Tang Y, Chen Y, Zhang X, Xia Y, Geng B. Association between blood manganese and bone mineral density in US adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29743-29754. [PMID: 36422781 DOI: 10.1007/s11356-022-24314-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) exposure may reduce bone mineral density (BMD); however, studies investigating its effects on BMD are limited, especially among adolescents. Therefore, the present study is aimed at investigating the association between blood Mn levels and BMD in adolescents. This cross-sectional study included participants aged 12-19 years with National Health and Nutrition Examination Survey data collected between 2011 and 2018. Total, trunk bone, lumbar spine, and pelvic BMDs were used as outcome variables. Multivariate linear regression models were used to investigate the association between blood Mn levels and BMD. The relationship between blood Mn level and BMD was assessed using smooth curve fitting. In total, 1,703 participants (mean age 15.62 ± 2.31 years) were considered. Multivariable linear regression models demonstrated that BMD decreased as blood Mn level increased, especially among girls aged 12-15 years. This relationship was also observable in non-Hispanic whites and other races according to subgroup analyses stratified by race. Smooth curve fitting indicated the existence of a non-linear relationship between blood Mn and BMD after confounding variable adjustment. The present study indicated that blood Mn levels were negatively associated with BMD in adolescents, especially in girls aged 12-15 years. Therefore, clinicians should be aware of the potential risk of low bone mass among adolescents with high blood Mn levels.
Collapse
Affiliation(s)
- Jinmin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Gansu, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Gansu, Lanzhou, China
- Orthopaedic Clinical Research Center of Gansu Province, Gansu, Lanzhou, China
| | - Yuchen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, Gansu, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Gansu, Lanzhou, China
- Orthopaedic Clinical Research Center of Gansu Province, Gansu, Lanzhou, China
| | - Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Gansu, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Gansu, Lanzhou, China
- Orthopaedic Clinical Research Center of Gansu Province, Gansu, Lanzhou, China
| | - Xiaohui Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Gansu, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Gansu, Lanzhou, China
- Orthopaedic Clinical Research Center of Gansu Province, Gansu, Lanzhou, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Gansu, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Gansu, Lanzhou, China
- Orthopaedic Clinical Research Center of Gansu Province, Gansu, Lanzhou, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Gansu, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, Gansu, Lanzhou, China.
- Orthopaedic Clinical Research Center of Gansu Province, Gansu, Lanzhou, China.
- Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, People's Republic of China.
| |
Collapse
|
11
|
Cui A, Xiao P, Hu B, Ma Y, Fan Z, Wang H, Zhou F, Zhuang Y. Blood Lead Level Is Negatively Associated With Bone Mineral Density in U.S. Children and Adolescents Aged 8-19 Years. Front Endocrinol (Lausanne) 2022; 13:928752. [PMID: 35846292 PMCID: PMC9283721 DOI: 10.3389/fendo.2022.928752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
CONTEXT The relationship of lead (Pb) exposure with bone health in children and adolescents remains controversial. OBJECTION We aimed to investigate the association of blood lead levels (BLL) with bone mineral density (BMD) in American children and adolescents using data from the National Health and Nutrition Examination Survey (NHANES), 2005-2010. METHODS We analyzed 5,583 subjects aged 8-19 years (mean age, 13.49 ± 3.35 years) from the NHANES 2005-2010. BLL was tested using inductively coupled plasma mass spectrometry. BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine, total femur, and femur neck. Multivariate linear regression models were used to explore the association between BLL and BMD, adjusting for age, gender, race/ethnicity, poverty income ratio (PIR), body mass index (BMI), serum calcium, and serum phosphorus. RESULTS BLL was negatively correlated with BMD at different sites of interest in children and adolescents. For every 1mg/dl increase in BLL, the BMD of the total spine, total hip, and femoral neck decreased by 0.011 g/cm2, 0.008 g/cm2, and 0.006 g/cm2. In addition, Pb affected the lumbar spine more than the femur. The effect estimates were stronger in girls than boys at the lumbar spine (P for interaction= 0.006). This negative association remained significant in American children and adolescents after excluding individuals with BLL more than 3.5 ug/dl. CONCLUSION Our study indicates that BLL is negatively correlated with BMD at different sites of interest in children and adolescents aged 8-19 years, even in the reference range. More research is needed to elucidate the relationships between Pb and bone health in children and adolescents, including specific mechanisms and confounding factors like race/ethnicity, gender, and age.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peilun Xiao
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Baoliang Hu
- Department of gastroenterology surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhuo Ma
- Department of Orthopedics, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhiqiang Fan
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hu Wang
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fengjin Zhou
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yan Zhuang, ; Fengjin Zhou,
| | - Yan Zhuang
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yan Zhuang, ; Fengjin Zhou,
| |
Collapse
|
12
|
He H, Zhang Z, Li M. Association between serum folate concentrations and blood lead levels in adolescents: A cross-sectional study. Front Pediatr 2022; 10:941651. [PMID: 36389396 PMCID: PMC9641282 DOI: 10.3389/fped.2022.941651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
As a heavy metal, lead is a common toxic agent. Its accumulation in the body is harmful to physical health, particularly in children and adolescents. Studies have reported that folate may play a protective role in lead exposure. An association between serum folate concentrations (SFC) and blood lead levels (BLL) has been documented in adults, but studies in adolescents are limited. This study investigated the relationship between SFC and BLL in American adolescents. This cross-sectional study collected relevant data on both SFC and BLL of 5,195 adolescents in the NHANES database from 2007 to 2018. Multivariable linear regressions and smooth curve fittings were adopted to evaluate the correlation between BLL and SFC. After adjusting potential confounders, we found negative relationships between BLL and SFC [β = -0.0041 (-0.0063, -0.0019)], and the associations were significant in non-Hispanic Whites, Mexican Americans, and other races but not significant in non-Hispanic blacks (P = 0.139). Furthermore, the negative trends were significant in adolescents aged 16-19 years and females aged 12-15 years but insignificant in males aged 12-15 years (P = 0.172). Therefore, these findings provide a basis for future research on the mechanism of folate in regulating blood lead levels.
Collapse
Affiliation(s)
- Huan He
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | - Zhan Zhang
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | - Min Li
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|