1
|
Mohamed Siraj H, Usaid M, Shaikh S, Dalain M, Ansari Y, Zehra Naqvi S, Hossain R, Anum H, Andrews Ravi C, Pant N, Awasarikar M, Husain K, Anand Hanchate A, Sagam A, Balasubramanian A. Bacterial Histamine as a Therapeutic Target for Abdominal Pain in Irritable Bowel Syndrome: A Literature Review. Cureus 2025; 17:e82132. [PMID: 40357103 PMCID: PMC12067815 DOI: 10.7759/cureus.82132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by abdominal pain, altered bowel habits, and discomfort. This narrative review explores the current understanding of IBS pathophysiology, diagnosis, and treatment, with a focus on the role of histamine in gastrointestinal disorders. The review summarizes the existing literature from electronic databases and manual searches. Key topics covered include the diagnostic criteria for IBS, mechanisms underlying abdominal pain, role of histamine in gastrointestinal motility, visceral hypersensitivity, and immune system dysregulation, highlighting its potential as a therapeutic target in IBS management. The narrative synthesis of findings provides insights into the complex interplay between gut microbiota, histamine production, and IBS symptomatology. Overall, this review underscores the need for further research to elucidate the mechanisms underlying IBS and histamine-related gastrointestinal disorders, with the ultimate goal of developing tailored therapeutic interventions for individuals affected by these conditions.
Collapse
Affiliation(s)
| | - Mohammed Usaid
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, GEO
| | - Saqib Shaikh
- Internal Medicine, Government Medical College, Latur, Latur, IND
| | | | - Yasmin Ansari
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, GEO
| | - Samreen Zehra Naqvi
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, GEO
| | - Raunak Hossain
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, GEO
| | - Huda Anum
- Internal Medicine, Bahria University of Medical and Dental College, Karachi, PAK
| | | | - Nivedita Pant
- Faculty of Medicine, David Tvildiani Medical University, Tbilisi, GEO
| | - Mihir Awasarikar
- Internal Medicine, Smt. Kashibai Navale Medical College & General Hospital, Pune, IND
| | - Kainat Husain
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Aligarh, IND
| | | | - Aswija Sagam
- Internal Medicine, Krishna Institute of Medical Sciences, Hyderabad, IND
| | - Anand Balasubramanian
- Internal Medicine, Hospital Corporation of America (HCA) Health Care Northwest, Houston, USA
| |
Collapse
|
2
|
Yao N, Kinouchi K, Katoh M, Ashtiani KC, Abdelkarim S, Morimoto H, Torimitsu T, Kozuma T, Iwahara A, Kosugi S, Komuro J, Kato K, Tonomura S, Nakamura T, Itoh A, Yamaguchi S, Yoshino J, Irie J, Hashimoto H, Yuasa S, Satoh A, Mikami Y, Uchida S, Ueki T, Nomura S, Baldi P, Hayashi K, Itoh H. Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring. Cell Metab 2025; 37:395-412.e6. [PMID: 39814018 PMCID: PMC11872692 DOI: 10.1016/j.cmet.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Na Yao
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Sherif Abdelkarim
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Hiroyuki Morimoto
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuto Torimitsu
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahide Kozuma
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihide Iwahara
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Health Center, Keio University, Yokohama, Japan
| | - Jin Komuro
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kyosuke Kato
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tonomura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshifumi Nakamura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Arata Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan; The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shusaku Uchida
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
3
|
Tamasi J, Kalabay L. Spectrum, Time Course, Stages, and a Proposal for the Diagnosis of Histamine Intolerance in General Practice: A Nonrandomized, Quasi-Experimental Study. J Clin Med 2025; 14:311. [PMID: 39860319 PMCID: PMC11765637 DOI: 10.3390/jcm14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Limited research has explored histamine intolerance from the perspective of primary caregivers. Our objective was to develop a practical symptom profile from the standpoint of general practice. We also aimed to gather data on the frequency and timing of disease progression and to establish a staging system. Methods: This study utilized a nonrandomized, quasi-experimental design. An in-depth interview was conducted with 217 patients involving 120 questions. To evaluate associations between food intake and symptoms, we recommended either an exclusion diet or a low-histamine diet. A follow-up questionnaire was subsequently administered. We also analyzed 3831 doctor-patient meetings involving upper respiratory symptoms. Results: Symptoms in 77 patients were associated with histamine-rich meals. The most characteristic symptoms included respiratory symptoms (95%), bloating (94%), headache (91%), fatigue (83%), postprandial drowsiness (81%), skin symptoms (81%), diarrhea/loose stool (77%), psychological symptoms (77%), dyspepsia (69%), and muscle/eyelid twitching (61%). Patients with suspected histamine intolerance visited primary care three times more often with upper respiratory symptoms than those without suspected histamine intolerance. The symptom spectrum of histamine intolerance involves multiple organ systems and occurs in distinct, repeating patterns. Symptoms can be described by their duration, sequence, and severity level, which is the key focus of this research, including visual representations. In its most severe stages, histamine intolerance may potentially involve mast cell activation. A personalized diet is associated with a gradual reduction in both the intensity and frequency of symptoms. Conclusions: The spectrum of histamine intolerance can be characterized by specific symptom patterns with defined frequencies, timelines, and symptom stages.
Collapse
Affiliation(s)
- József Tamasi
- Department of Family Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - László Kalabay
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
4
|
Duelo A, Sánchez-Pérez S, Ruiz-Leon AM, Casanovas-Garriga F, Pellicer-Roca S, Iduriaga-Platero I, Costa-Catala J, Veciana-Nogués MT, Fernández-Solà J, Muñoz-Cano RM, Bartra J, Combalia A, Comas-Basté O, Casas R, Latorre-Moratalla ML, Estruch R, Vidal-Carou MC. Study Protocol for a Prospective, Unicentric, Double-Blind, Randomized, and Placebo-Controlled Trial on the Efficacy of a Low-Histamine Diet and DAO Enzyme Supplementation in Patients with Histamine Intolerance. Nutrients 2024; 17:29. [PMID: 39796463 PMCID: PMC11723128 DOI: 10.3390/nu17010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation. To date, around twenty studies have investigated the effectiveness of these dietary strategies in reducing the frequency and/or intensity of symptoms, with promising results. However, the limitations of these studies (small patient cohort, lack of control group, and short dietary intervention periods) highlight the need for more ambitiously designed research. Therefore, the main objective of this prospective, unicentric, double-blind, randomized, and placebo-controlled trial is to evaluate the efficacy of a low-histamine diet and/or DAO supplementation over a three-month period in improving symptoms of histamine intolerance. Additionally, the impacts of these dietary strategies on the intestinal microbiota composition, urinary profile of histamine metabolites, serum DAO activity, and plasma histamine levels will be assessed throughout the intervention. METHODS The trial will enroll 400 patients who will be randomly assigned to one of two groups: the intervention group, which will follow a low-histamine diet, or the control group, which will maintain their habitual dietary habits. Within each of these groups, participants will be further divided into four subgroups to receive either exogenous DAO enzyme supplementation (from porcine or plant sources, with the latter administered at two different dosages) or a placebo. Therefore, a total of eight distinct intervention groups will be considered. The comparison of these groups will allow the evaluation of the individual effects of the low-histamine diet or DAO enzyme supplementation, as well as their possible synergistic effect. RESULTS The results of this study should help to improve dietary recommendations for histamine-intolerant patients and ultimately enhance their quality of life.
Collapse
Affiliation(s)
- Adriana Duelo
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - Sònia Sánchez-Pérez
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
- Departament de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.M.M.-C.); (J.B.)
| | - Ana María Ruiz-Leon
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
- Departament de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.M.M.-C.); (J.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Fundación Dieta Mediterránea, 08021 Barcelona, Spain
| | - Francesc Casanovas-Garriga
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
- Departament de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
| | - Salvador Pellicer-Roca
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - Irache Iduriaga-Platero
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - Judit Costa-Catala
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - Joaquim Fernández-Solà
- Departament de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Rosa M. Muñoz-Cano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.M.M.-C.); (J.B.)
- RICORS—Red Enfermedades Inflamatorias (REI), Insituto de Salud Carlos III, 28029 Madrid, Spain
- Servei d’Al lergologia, Hospital Clínic, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Joan Bartra
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.M.M.-C.); (J.B.)
- RICORS—Red Enfermedades Inflamatorias (REI), Insituto de Salud Carlos III, 28029 Madrid, Spain
- Servei d’Al lergologia, Hospital Clínic, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Andrea Combalia
- Departament de Dermatologia, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - Rosa Casas
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
- Departament de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.M.M.-C.); (J.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| | - Ramon Estruch
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
- Departament de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.M.M.-C.); (J.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.P.-R.); (I.I.-P.); (J.C.-C.); (M.T.V.-N.); (O.C.-B.); (M.C.V.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (A.M.R.-L.); (F.C.-G.); (R.E.)
| |
Collapse
|
5
|
Gautam H, Shaik NA, Banaganapalli B, Popowich S, Subhasinghe I, Ayalew LE, Mandal R, Wishart DS, Tikoo S, Gomis S. Elevated levels of butyric acid in the jejunum of an animal model of broiler chickens: from early onset of Clostridium perfringens infection to clinical disease of necrotic enteritis. J Anim Sci Biotechnol 2024; 15:144. [PMID: 39487547 PMCID: PMC11531110 DOI: 10.1186/s40104-024-01105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Necrotic enteritis (NE) is an economically important disease of broiler chickens caused by Clostridium perfringens (CP). The pathogenesis, or disease process, of NE is still not clear. This study aimed to identify the alterations of metabolites and metabolic pathways associated with subclinical or clinical NE in CP infected birds and to investigate the possible variations in the metabolic profile of birds infected with different isolates of CP. METHODOLOGY Using a well-established NE model, the protein content of feed was changed abruptly before exposing birds to CP isolates with different toxin genes combinations (cpa, cpb2, netB, tpeL; cpa, cpb2, netB; or cpa, cpb2). Metabolomics analysis of jejunal contents was performed by a targeted, fully quantitative LC-MS/MS based assay. RESULTS This study detected statistically significant differential expression of 34 metabolites including organic acids, amino acids, fatty acids, and biogenic amines, including elevation of butyric acid at onset of NE in broiler chickens. Subsequent analysis of broilers infected with CP isolates with different toxin gene combinations confirmed an elevation of butyric acid consistently among 21 differentially expressed metabolites including organic acids, amino acids, and biogenic amines, underscoring its potential role during the development of NE. Furthermore, protein-metabolite network analysis revealed significant alterations in butyric acid and arginine-proline metabolisms. CONCLUSION This study indicates a significant metabolic difference between CP-infected and non-infected broiler chickens. Among all the metabolites, butyric acid increased significantly in CP-infected birds compared to non-infected healthy broilers. Logistic regression analysis revealed a positive association between butyric acid (coefficient: 1.23, P < 0.01) and CP infection, while showing a negative association with amino acid metabolism. These findings suggest that butyric acid could be a crucial metabolite linked to the occurrence of NE in broiler chickens and may serve as an early indicator of the disease at the farm level. Further metabolomic experiments using different NE animal models and field studies are needed to determine the specificity and to validate metabolites associated with NE, regardless of predisposing factors.
Collapse
Affiliation(s)
- Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Noor Ahmad Shaik
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Rupasri Mandal
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Suresh Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, 7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada.
| |
Collapse
|
6
|
Engevik KA, Hazzard A, Puckett B, Hoch KM, Haidacher SJ, Haag AM, Spinler JK, Versalovic J, Engevik MA, Horvath TD. Phylogenetically diverse bacterial species produce histamine. Syst Appl Microbiol 2024; 47:126539. [PMID: 39029335 DOI: 10.1016/j.syapm.2024.126539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Histamine is an important biogenic amine known to impact a variety of patho-physiological processes ranging from allergic reactions, gut-mediated anti-inflammatory responses, and neurotransmitter activity. Histamine is found both endogenously within specialized host cells and exogenously in microbes. Exogenous histamine is produced through the decarboxylation of the amino acid L-histidine by bacterial-derived histidine decarboxylase enzymes. To investigate how widespread histamine production is across bacterial species, we examined 102,018 annotated genomes in the Integrated Microbial Genomes Database and identified 3,679 bacterial genomes (3.6 %) which possess the enzymatic machinery to generate histamine. These bacteria belonged to 10 phyla: Bacillota, Bacteroidota, Actinomycetota, Pseudomonadota, Lentisphaerota, Fusobacteriota, Armatimonadota, Cyanobacteriota, Thermodesulfobacteriota, and Verrucomicrobiota. The majority of the identified bacteria were terrestrial or aquatic in origin, although several bacteria originated in the human gut microbiota. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted metabolomics to confirm our genome discoveries correlated with L-histidine-to-histamine conversion in a chemically defined bacterial growth medium by a cohort of select environmental and human gut bacteria. We found that environmental microbes Vibrio harveyi, Pseudomonas fluorescens and Streptomyces griseus generated considerable levels of histamine (788 - 8,730 ng/mL). Interestingly, we found higher concentrations of histamine produced by gut-associated Fusobacterium varium, Clostridium perfringens, Limosilactobacillus reuteri and Morganella morganii (8,510--82,400 ng/mL). This work expands our knowledge of histamine production by diverse microbes.
Collapse
Affiliation(s)
- Kristen A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Amber Hazzard
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Brenton Puckett
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Kathleen M Hoch
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sigmund J Haidacher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony M Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas D Horvath
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Singh G, Dixit I, Kalman D, Gogineni NT. A Novel Herbal Composition Alleviates Functional Constipation, Reduces Gastrointestinal Transit Time, and Improves Bowel Function in Adults: A Double-Blind, Randomized Clinical Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:553-566. [PMID: 38691810 DOI: 10.1080/27697061.2024.2346073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND OBJECTIVE A recent proof-of-concept pilot clinical study has demonstrated that consumption of CL18100F4, a proprietary herbal blend of Withania somnifera root and Abelmoschus esculentus fruit extracts, significantly relieved the participants from functional constipation and improved their quality of life. The objective of the present randomized, double-blind, placebo-controlled study was to reevaluate the efficacy and tolerability of CL18100F4 in a larger number of subjects. METHODS Male and female subjects (n = 135; age: 25-60 years), selected through Rome-IV criteria for functional constipation, were randomized into placebo and 300 or 500 mg of CL18100F4 groups and supplemented daily over 60 consecutive days. The primary efficacy outcome measure was Patient Assessment of Constipation-Symptoms (PAC-SYM), evaluated at baseline and on days 7, 30, and 60 of supplementation. The secondary efficacy parameters included Patient Assessment of Constipation-Quality of Life (PAC-QOL), Gastrointestinal Symptom Rating Scale (GSRS) scores, Gastrointestinal Transit Time (GIT), and Complete Spontaneous Bowel Movement (CSBM). Serum levels of Interleukin (IL)-6, IL-10, cortisol, gastrin, serotonin, Diamine oxidase (DAO), and Zonulin were measured. RESULTS CL18100F4 supplementation significantly (p < 0.001) reduced the PAC-SYM, PAC-QOL, GSRS scores, and GIT and improved CSBM scores. CL18100F4 significantly improved (p < 0.001) sleep quality and decreased depression and anxiety symptoms in the participants. Notably, relief in constipation symptoms and improved gastrointestinal (GI) function were reported starting from day 7. Furthermore, CL18100F4 supplementation significantly (p < 0.001) increased the serum levels of IL-10, DAO, serotonin, gastrin, reduced IL-6, cortisol, and Zonulin. No major adverse events were observed. Participants' vital signs, hematology, clinical biochemistry, and urinalysis parameters were within the normal ranges. CONCLUSION The present investigation demonstrates that CL18100F4 is tolerable and efficacious in relieving functional constipation, alleviating GI dysfunction, and improving associated non-GI factors in male and female adults.
Collapse
Affiliation(s)
- Gaurav Singh
- Department of General Medicine, Upendra Medicare, Varanasi, Uttar Pradesh, India
| | - Indresh Dixit
- Department of Medicine, Vatsalya Hospital Multi Speciality Center, Varanasi, Uttar Pradesh, India
| | - Douglas Kalman
- College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - Naga Tejaswi Gogineni
- Department of General Medicine, Aditya Multi Speciality Hospital, Guntur, Andhra Pradesh, India
| |
Collapse
|
8
|
Guo K, Zhao Z, Yang Y, Jiang X, Xu H, Tao F, Xu Y, Liu W. Emergence of an Extensive Drug Resistant Citrobacter portucalensis Clinical Strain Harboring bla SFO-1, bla KPC-2, and bla NDM-1. Infect Drug Resist 2024; 17:2273-2283. [PMID: 38854780 PMCID: PMC11162216 DOI: 10.2147/idr.s461118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Background To explore the plasmid characteristics and transfer mechanisms of an extensive drug resistant (XDR) clinical isolate, Citrobacter portucalensis L2724hy, co-producing bla SFO-1, bla NDM-1, and bla KPC-2. Methods Species confirmation of L2724hy was achieved through 16S rRNA sequencing and Average Nucleotide Identity (ANI) analysis. Antimicrobial susceptibility testing (AST) employed the agar dilution and micro broth dilution methods. Identification of resistance genes was carried out by PCR and whole-genome sequencing (WGS). Essential resistance gene locations were verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and southern hybridization experiments. Subsequent WGS data analysis delved into drug resistance genes and plasmids. Results The confirmation of the strain L2724hy as an extensive drug-resistant Citrobacter portucalensis, resistant to almost all antibiotics tested except polymyxin B and tigecycline, was achieved through 16S rRNA sequencing, ANI analysis and AST results. WGS and subsequent analysis revealed L2724hy carrying bla SFO-1, bla NDM-1, and bla KPC-2 on plasmids of various sizes. The uncommon ESBL gene bla SFO-1 coexists with the fosA3 gene on an IncFII plasmid, featuring the genetic environment IS26-fosA3-IS26-ampR-bla SFO-1-IS26. The bla NDM-1 was found on an IncX3 plasmid, coexisting with bla SHV-12, displaying the sequence IS5-IS3000-IS3000-Tn2-bla NDM-1-ble-trpF-dsbD-cutA-gros-groL, lacking ISAa125. The bla KPC-2 is located on an unclassified plasmid, exhibiting the sequence Tn2-tnpR-ISKpn27-bla KPC-2-ISKpn6-korC. Conjugation assays confirmed the transferability of both bla NDM-1 and bla KPC-2. Conclusion We discovered the coexistence of bla SFO-1, bla NDM-1, and bla KPC-2 in C. portucalensis for the first time, delving into plasmid characteristics and transfer mechanisms. Our finding highlights the importance of vigilant monitoring of drug-resistance genes and insertion elements in uncommon strains.
Collapse
Affiliation(s)
- Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Zanzan Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ye Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Duelo A, Comas-Basté O, Sánchez-Pérez S, Veciana-Nogués MT, Ruiz-Casares E, Vidal-Carou MC, Latorre-Moratalla ML. Pilot Study on the Prevalence of Diamine Oxidase Gene Variants in Patients with Symptoms of Histamine Intolerance. Nutrients 2024; 16:1142. [PMID: 38674832 PMCID: PMC11054051 DOI: 10.3390/nu16081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
A retrospective pilot study was carried out to investigate the prevalence of four variants of the diamine oxidase (DAO) encoding gene (AOC1) in Caucasian adults with symptoms of histamine intolerance. In a cohort of 100 patients and 100 healthy individuals, DAO-encoding gene non-synonymous Single Nucleotide Variations (SNVs) were genotyped by multiplex single-nucleotide primer extension (SNPE) and capillary electrophoresis, and serum DAO activity was analyzed with a radio-extraction assay. The study found that 79% of individuals with symptoms of histamine intolerance harbored one or more of the four SNVs associated with reduced DAO activity. No significant differences were found in the prevalence of any variant between the group of patients and healthy controls. However, when considering the status of the alleles associated with DAO deficiency, more homozygous alleles were observed in histamine-intolerant patients. Moreover, a slightly but statistically higher percentage of patients had a high genetic risk score, reflecting the cumulative effect of carrying multiple DAO deficiency-associated gene variants and a high load of risk alleles (homozygous). A relationship between serum DAO activity and the genetic load of one specific SNV was observed, with DAO activity being significantly lower in patients homozygous for rs2052129. These results potentially support that carrying multiple DAO deficiency-associated gene variants and a high load of risk alleles (homozygous) is more relevant than the mere presence of one or more SNVs. Further studies are needed to determine the predictive value of these DAO-encoding gene variants.
Collapse
Affiliation(s)
- Adriana Duelo
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.S.-P.); (M.T.V.-N.); (M.C.V.-C.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- International Institute of DAO Deficiency, C/Escoles Pies 49, 08017 Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.S.-P.); (M.T.V.-N.); (M.C.V.-C.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.S.-P.); (M.T.V.-N.); (M.C.V.-C.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.S.-P.); (M.T.V.-N.); (M.C.V.-C.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Eva Ruiz-Casares
- Vivolabs, C/Marqués de la Valdavia 106, 28100 Alcobendas, Spain;
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.S.-P.); (M.T.V.-N.); (M.C.V.-C.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (A.D.); (S.S.-P.); (M.T.V.-N.); (M.C.V.-C.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
10
|
de Mora F, Messlinger K. Is calcitonin gene-related peptide (CGRP) the missing link in food histamine-induced migraine? A review of functional gut-to-trigeminovascular system connections. Drug Discov Today 2024; 29:103941. [PMID: 38447930 DOI: 10.1016/j.drudis.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Calcitonin gene-related peptide (CGRP) and histamine plasma concentrations increase during migraine attacks. Both mediators are potent vasodilators, and they have been shown to reciprocally contribute to the release of each other in the trigeminovascular system, possibly driving migraine development. A high-histamine-content diet triggers migraine in patients who have histamine degradation deficiency owing to diaminooxidase (DAO) gene mutations. Therefore, studying functional links between exogenous histamine and CGRP seems promising for the understanding of diet-induced migraine generation. Notably, there is a lack of knowledge about the interplay of the enteric nervous system and the spinal/trigeminal somatosensory system with regard to CGRP and histamine. Based on background evidence, we propose that a functional interconnection between exogenous histamine and CGRP contributes to migraine development.
Collapse
Affiliation(s)
- Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Edificio V, Universidad Autónoma de Barcelona, Campus UAB - 08193 Bellaterra, Barcelona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany.
| |
Collapse
|
11
|
Fu Z, Yang X, Jiang Y, Mao X, Liu H, Yang Y, Chen J, Chen Z, Li H, Zhang XS, Mao X, Li N, Wang D, Jiang J. Microbiota profiling reveals alteration of gut microbial neurotransmitters in a mouse model of autism-associated 16p11.2 microduplication. Front Microbiol 2024; 15:1331130. [PMID: 38596370 PMCID: PMC11002229 DOI: 10.3389/fmicb.2024.1331130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/β-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.
Collapse
Affiliation(s)
- Zhang Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Youheng Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Hualin Liu
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Yanming Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jia Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhumei Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, Guangdong, China
| | - Huiliang Li
- Division of Medicine, Wolfson Institute for Biomedical Research, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Dilong Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Kapur N, Alam MA, Hassan SA, Patel PH, Wempe LA, Bhogoju S, Goretsky T, Kim JH, Herzog J, Ge Y, Awuah SG, Byndloss M, Baumler AJ, Zadeh MM, Sartor RB, Barrett T. Enhanced mucosal mitochondrial function corrects dysbiosis and OXPHOS metabolism in IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584471. [PMID: 38559035 PMCID: PMC10979996 DOI: 10.1101/2024.03.14.584471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Mitochondrial (Mito) dysfunction in IBD reduces mucosal O2 consumption and increases O2 delivery to the microbiome. Increased enteric O2 promotes blooms of facultative anaerobes (eg. Proteobacteria ) and restricts obligate anaerobes (eg. Firmicutes ). Dysbiotic metabolites negatively affect host metabolism and immunity. Our novel compound (AuPhos) upregulates intestinal epithelial cell (IEC) mito function, attenuates colitis and corrects dysbiosis in humanized Il10-/- mice. We posit that AuPhos corrects IBD-associated dysbiotic metabolism. Methods Primary effect of AuPhos on mucosal Mito respiration and healing process was studied in ex vivo treated human colonic biopsies and piroxicam-accelerated (Px) Il10-/- mice. Secondary effect on microbiome was tested in DSS-colitis WT B6 and germ-free 129.SvEv WT or Il10-/- mice reconstituted with human IBD stool (Hu- Il10-/- ). Mice were treated orally with AuPhos (10- or 25- mg/kg; q3d) or vehicle, stool samples collected for fecal lipocalin-2 (f-LCN2) assay and microbiome analyses using 16S rRNA sequencing. AuPhos effect on microbial metabolites was determined using untargeted global metabolomics. AuPhos-induced hypoxia in IECs was assessed by Hypoxyprobe-1 staining in sections from pimonidazole HCl-infused DSS-mice. Effect of AuPhos on enteric oxygenation was assessed by E. coli Nissle 1917 WT (aerobic respiration-proficient) and cytochrome oxidase (cydA) mutant (aerobic respiration-deficient). Results Metagenomic (16S) analysis revealed AuPhos reduced relative abundances of Proteobacteria and increased blooms of Firmicutes in uninflamed B6 WT, DSS-colitis, Hu-WT and Hu- Il10-/- mice. AuPhos also increased hypoxyprobe-1 staining in surface IECs suggesting enhanced O2 utilization. AuPhos-induced anaerobiosis was confirmed by a significant increase in cydA mutant compared to WT (O2-utlizing) E.coli . Ex vivo treatment of human biopsies with AuPhos showed significant increase in Mito mass, and complexes I and IV. Further, gene expression analysis of AuPhos-treated biopsies showed increase in stem cell markers (Lgr4, Lgr5, Lrig1), with concomitant decreases in pro-inflammatory markers (IL1β,MCP1, RankL). Histological investigation of AuPhos-fed Px- Il10-/- mice showed significantly decreased colitis score in AuPhos-treated Px- Il10-/- mice, with decrease in mRNA of pro-inflammatory cytokines and increase in Mito complexes ( ND5 , ATP6 ). AuPhos significantly altered microbial metabolites associated with SCFA synthesis, FAO, TCA cycle, tryptophan and polyamine biosynthesis pathways. AuPhos increased pyruvate, 4-hydroxybutyrate, 2-hydroxyglutarate and succinate, suggesting an upregulation of pyruvate and glutarate pathways of butyrate production. AuPhos reduced IBD-associated primary bile acids (BA) with concomitant increase in secondary BA (SBA). AuPhos treatment significantly decreased acylcarnitines and increased L-carnitine reflective of enhanced FAO. AuPhos increases TCA cycle intermediates and creatine, energy reservoir substrates indicating enhanced OxPHOS. Besides, AuPhos also upregulates tryptophan metabolism, decreases Kynurenine and its derivatives, and increases polyamine biosynthesis pathway (Putresceine and Spermine). Conclusion These findings indicate that AuPhos-enhanced IEC mitochondrial function reduces enteric O2 delivery, which corrects disease-associated metabolomics by restoring short-chain fatty acids, SBA, AA and IEC energy metabolism. Graphical abstract
Collapse
|
13
|
Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, Liu B, Li D, Cui Y, Wang Z, Sun H, Zhu X, Ma S, Shi Y. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int J Biol Macromol 2024; 261:129696. [PMID: 38280701 DOI: 10.1016/j.ijbiomac.2024.129696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated β-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qasim Ali
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China.
| |
Collapse
|
14
|
Zhang Z, Li D, Xie F, Muhetaer G, Zhang H. The cause-and-effect relationship between gut microbiota abundance and carcinoid syndrome: a bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1291699. [PMID: 38188562 PMCID: PMC10766758 DOI: 10.3389/fmicb.2023.1291699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Carcinoid syndrome (CS) commonly results from neuroendocrine tumors. While active substances are recognized as the main causes of the typical symptoms such as diarrhea and skin flush, the cause-and-effect relationship between gut microbiota abundance and CS remains unclear. Methods The Single Nucleotide Polymorphisms (SNPs) related to gut microbiota abundance and CS were obtained from the GWAS summary data. The inverse variance weighted (IVW) method was used to assess the causal relationship between gut microbiota abundance and CS. Additionally, the MR-Egger, Weighted Median model, and Weighted model were employed as supplementary approaches. The heterogeneity function of the TwoSampleMR package was utilized to assess whether SNPs exhibit heterogeneity. The Egger intercept and Presso test were used to assess whether SNPs exhibit pleiotropy. The Leave-One-Out test was employed to evaluate the sensitivity of SNPs. The Steiger test was utilized to examine whether SNPs have a reverse causal relationship. A bidirectional mendelian randomization (MR) study was conducted to elucidate the inferred cause-and-effect relationship between gut microbiota abundance and CS. Results The IVW results indicated a causal relationship between 6 gut microbiota taxa and CS. Among the 6 gut microbiota taxa, the genus Anaerofilum (IVW OR: 0.3606, 95%CI: 0.1554-0.8367, p-value: 0.0175) exhibited a protective effect against CS. On the other hand, the family Coriobacteriaceae (IVW OR: 3.4572, 95%CI: 1.0571-11.3066, p-value: 0.0402), the genus Enterorhabdus (IVW OR: 4.2496, 95%CI: 1.3314-13.5640, p-value: 0.0146), the genus Ruminiclostridium6 (IVW OR: 4.0116, 95%CI: 1.2711-12.6604, p-value: 0.0178), the genus Veillonella (IVW OR: 3.7023, 95%CI: 1.0155-13.4980, p-value: 0.0473) and genus Holdemanella (IVW OR: 2.2400, 95%CI: 1.0376-4.8358, p-value: 0.0400) demonstrated a detrimental effect on CS. The CS was not found to have a reverse causal relationship with the above 6 gut microbiota taxa. Conclusion Six microbiota taxa were found to have a causal relationship with CS, and further randomized controlled trials are needed for verification.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongting Li
- The Affiliated Guangzhou Hospital of TCM of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxi Xie
- Maoming Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gulizeba Muhetaer
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Key Laboratory of Clinical Research of Chinese Medicine, Guangzhou, China
- Guangdong Joint Laboratory of Guangdong, Hong Kong and Macao Chinese Medicine and Immune Diseases, Guangzhou, China
- State Key Laboratory of Wet Certificate of Chinese Medicine Jointly Built by the Province and the Ministry, Guangzhou, China
| |
Collapse
|
15
|
DI Pierro F, Zerbinati N, Guasti L, Bertuccioli A, Cazzaniga M, Gerardi V, Piccirelli S, Salvi D, Pugliano CL, Cesaro P, Spada C. Can the analysis of the gut microbiota have a clinical application in real life? Minerva Gastroenterol (Torino) 2023; 69:576-580. [PMID: 37439694 DOI: 10.23736/s2724-5985.23.03499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Francesco DI Pierro
- Scientific Department, Velleja Research, Milan, Italy -
- Department of Medicine and Surgery, University of Insubria, Varese, Italy -
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | - Viviana Gerardi
- Digestive Endoscopy and Gastroenterology, Poliambulanza Foundation, Brescia, Italy
| | - Stefania Piccirelli
- Digestive Endoscopy and Gastroenterology, Poliambulanza Foundation, Brescia, Italy
| | - Daniele Salvi
- Digestive Endoscopy and Gastroenterology, Poliambulanza Foundation, Brescia, Italy
| | - Cecilia L Pugliano
- Digestive Endoscopy and Gastroenterology, Poliambulanza Foundation, Brescia, Italy
| | - Paola Cesaro
- Digestive Endoscopy and Gastroenterology, Poliambulanza Foundation, Brescia, Italy
| | - Cristiano Spada
- Unit of Digestive Endoscopy, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| |
Collapse
|
16
|
Schnedl WJ, Michaelis S, Mangge H, Enko D. A personalized management approach in disorders of the irritable bowel syndrome spectrum. Clin Nutr ESPEN 2023; 57:96-105. [PMID: 37739739 DOI: 10.1016/j.clnesp.2023.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 09/24/2023]
Abstract
Symptoms of the disorders across the irritable bowel syndrome (IBS) spectrum include several different, usually postprandial, abdominal complaints. Up to date, dietary treatments of the IBS have neither been personalized nor diagnosed with sufficient scientific evidence. They have mostly been treated using 'one-size-fits-all' approaches. Such include exclusion diets, a low fermentable oligosaccharides, disaccharides, monosaccharides and polyols diet, and gluten-free diets, lactose-free diets, a diet recommended by the UK National Institute for Health and Care Excellence, and a wheat-free diet. The exact pathophysiology of IBS disorders across the spectrum is still unclear. However, the symptom profile of IBS spectrum disorders seems similar to that of food intolerance/malabsorption syndromes. Celiac disease, fructose malabsorption, histamine intolerance and lactose intolerance represent food intolerance/malabsorption disorders based on the indigestion of sugars and/or proteins. Helicobacter pylori infection may potentially promote the development of IBS and, when facing a case of IBS-like symptoms, a search for intolerance/malabsorption and H. pylori should be added to find the correct treatment for the respective patient. This review will discuss why the 'one-size-fits-all' dietary approach in the treatment of complaints across the IBS spectrum cannot be successful. Hence, it will provide an overview of the most common overall dietary approaches currently used, and why those should be discouraged. Alternatively, a noninvasive diagnostic workup of the pathophysiologic factors of food intolerance/malabsorption in each patient with symptoms of the IBS spectrum is suggested. Additionally, if H. pylori is found, eradication therapy is mandatory, and if food intolerance/malabsorption is detected, an individual and personalized dietary intervention by a registered dietician is recommended.
Collapse
Affiliation(s)
- Wolfgang J Schnedl
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036, Graz, Austria; General Internal Medicine Practice, Dr. Theodor Körnerstrasse 19b, A-8600, Bruck, Austria.
| | - Simon Michaelis
- Institute of Clinical Chemistry and Laboratory Medicine, Hospital Hochsteiermark, Vordernberger Straße 42, 8700, Leoben, Austria
| | - Harald Mangge
- Institute of Clinical Chemistry and Laboratory Medicine, Hospital Hochsteiermark, Vordernberger Straße 42, 8700, Leoben, Austria; Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| |
Collapse
|
17
|
Katagiri S, Ohsugi Y, Shiba T, Yoshimi K, Nakagawa K, Nagasawa Y, Uchida A, Liu A, Lin P, Tsukahara Y, Iwata T, Tohara H. Homemade blenderized tube feeding improves gut microbiome communities in children with enteral nutrition. Front Microbiol 2023; 14:1215236. [PMID: 37680532 PMCID: PMC10482415 DOI: 10.3389/fmicb.2023.1215236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Enteral nutrition for children is supplied through nasogastric or gastrostomy tubes. Diet not only influences nutritional intake but also interacts with the composition and function of the gut microbiota. Homemade blenderized tube feeding has been administered to children receiving enteral nutrition, in addition to ready-made tube feeding. The purpose of this study was to evaluate the oral/gut microbial communities in children receiving enteral nutrition with or without homemade blenderized tube feeding. Among a total of 30 children, 6 receiving mainly ready-made tube feeding (RTF) and 5 receiving mainly homemade blenderized tube feeding (HBTF) were analyzed in this study. Oral and gut microbiota community profiles were evaluated through 16S rRNA sequencing of saliva and fecal samples. The α-diversity representing the number of observed features, Shannon index, and Chao1 in the gut were significantly increased in HBTF only in the gut microbiome but not in the oral microbiome. In addition, the relative abundances of the phylum Proteobacteria, class Gammaproteobacteria, and genus Escherichia-Shigella were significantly low, whereas that of the genus Ruminococcus was significantly high in the gut of children with HBTF, indicating HBTF altered the gut microbial composition and reducing health risks. Metagenome prediction showed enrichment of carbon fixation pathways in prokaryotes at oral and gut microbiomes in children receiving HBTF. In addition, more complex network structures were observed in the oral cavity and gut in the HBTF group than in the RTF group. In conclusion, HBTF not only provides satisfaction and enjoyment during meals with the family but also alters the gut microbial composition to a healthy state.
Collapse
Affiliation(s)
- Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kanako Yoshimi
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Nagasawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aritoshi Uchida
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Tsukahara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
18
|
Fiorani M, Del Vecchio LE, Dargenio P, Kaitsas F, Rozera T, Porcari S, Gasbarrini A, Cammarota G, Ianiro G. Histamine-producing bacteria and their role in gastrointestinal disorders. Expert Rev Gastroenterol Hepatol 2023; 17:709-718. [PMID: 37394958 DOI: 10.1080/17474124.2023.2230865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gut microbiota produces thousands of metabolites, which have a huge impact on the host health. Specific microbial strains are able to synthesize histamine, a molecule with a crucial role in many physiologic and pathologic mechanisms of the host. This function is mediated by the histidine decarboxylase enzyme (HDC) that converts the amino acid histidine to histamine. AREAS COVERED This review summarizes the emerging data on histamine production by gut microbiota, and the effect of bacterial-derived histamine in different clinical contexts, including cancer, irritable bowel syndrome, and other gastrointestinal and extraintestinal pathologies. This review will also outline the impact of histamine on the immune system and the effect of probiotics that can secrete histamine. Search methodology: we searched the literature on PubMed up to February 2023. EXPERT OPINION The potential of modulating gut microbiota to influence histamine production is a promising area of research, and although our knowledge of histamine-secreting bacteria is still limited, recent advances are exploring their diagnostic and therapeutical potential. Diet, probiotics, and pharmacological treatments directed to the modulation of histamine-secreting bacteria may in the future potentially be employed in the prevention and management of several gastrointestinal and extraintestinal disorders.
Collapse
Affiliation(s)
- Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Livio Enrico Del Vecchio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
19
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
20
|
Fecal Calprotectin Elevations Associated with Food Intolerance/Malabsorption Are Significantly Reduced with Targeted Diets. Nutrients 2023; 15:nu15051179. [PMID: 36904178 PMCID: PMC10005609 DOI: 10.3390/nu15051179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Inflammatory bowel disease (IBD) involves two clinically defined entities, namely Crohn's disease and ulcerative colitis. Fecal calprotectin (FCAL) is used as a marker to distinguish between organic IBD and functional bowel disease in disorders of the irritable bowel syndrome (IBS) spectrum. Food components may affect digestion and cause functional abdominal disorders of the IBS spectrum. In this retrospective study, we report on FCAL testing to search for IBD in 228 patients with disorders of the IBS spectrum caused by food intolerances/malabsorption. Included were patients with fructose malabsorption (FM), histamine intolerance (HIT), lactose intolerance (LIT), and H. pylori infection. We found elevated FCAL values in 39 (17.1%) of 228 IBS patients with food intolerance/malabsorption and H. pylori infection. Within these, fourteen patients were lactose intolerant, three showed fructose malabsorption, and six had histamine intolerance. The others had combinations of the above conditions: five patients had LIT and HIT, two patients had LIT and FM, and four had LIT and H. pylori. In addition, there were individual patients with other double or triple combinations. In addition to LIT, IBD was suspected in two patients due to continuously elevated FCAL, and then found via histologic evaluation of biopsies taken during colonoscopy. One patient with elevated FCAL had sprue-like enteropathy caused by the angiotensin receptor-1 antagonist candesartan. When screening for study subjects concluded, 16 (41%) of 39 patients with initially elevated FCAL agreed to voluntarily control FCAL measurements, although symptom-free and -reduced, following the diagnosis of intolerance/malabsorption and/or H. pylori infection. After the initiation of a diet individualized to the symptomatology and eradication therapy (when H. pylori was detected), FCAL values were significantly lowered or reduced to be within the normal range.
Collapse
|
21
|
Megoura M, Ispas-Szabo P, Mateescu MA. Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights. Molecules 2023; 28:molecules28030992. [PMID: 36770661 PMCID: PMC9921882 DOI: 10.3390/molecules28030992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and -20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders.
Collapse
|
22
|
Tang J, Song X, Zhao M, Chen H, Wang Y, Zhao B, Yu S, Ma T, Gao L. Oral administration of live combined Bacillus subtilis and Enterococcus faecium alleviates colonic oxidative stress and inflammation in osteoarthritic rats by improving fecal microbiome metabolism and enhancing the colonic barrier. Front Microbiol 2022; 13:1005842. [PMID: 36439850 PMCID: PMC9686382 DOI: 10.3389/fmicb.2022.1005842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/30/2022] [Indexed: 10/02/2023] Open
Abstract
Osteoarthritis (OA) causes intestinal damage. The protective effect of probiotics on the intestine is indeed effective; however, the mechanism of protection against intestinal damage in OA is not clear. In this study, we used meniscal/ligamentous injury (MLI) to mimic OA in rats and explored the colonic protective effects of Bacillus subtilis and Enterococcus faecium on OA. Our study showed that treatment with B. subtilis and E. faecium attenuated colonic injury and reduced inflammatory and oxidative stress factors in the serum of osteoarthritic rats. α- and ß diversity of the fecal flora were not different among groups; no significant differences were observed in the abundances of taxa at the phylum and genus levels. We observed the presence of the depression-related genera Alistipes and Paraprevotella. Analysis of fecal untargeted metabolism revealed that histamine level was significantly reduced in the colon of OA rats, affecting intestinal function. Compared to that in the control group, the enriched metabolic pathways in the OA group were primarily for energy metabolisms, such as pantothenate and CoA biosynthesis, and beta-alanine metabolism. The treatment group had enriched linoleic acid metabolism, fatty acid biosynthesis, and primary bile acid biosynthesis, which were different from those in the control group. The differences in the metabolic pathways between the treatment and OA groups were more evident, primarily in symptom-related metabolic pathways such as Huntington's disease, spinocerebellar ataxia, energy-related central carbon metabolism in cancer, pantothenate and CoA biosynthesis metabolic pathways, as well as some neurotransmission and amino acid transport, and uptake- and synthesis-related metabolic pathways. On further investigation, we found that B. subtilis and E. faecium treatment enhanced the colonic barrier of OA rats, with elevated expressions of tight junction proteins occludin and Zonula occludens 1 and MUC2 mRNA. Intestinal permeability was reduced, and serum LPS levels were downregulated in the treatment group. B. subtilis and E. faecium also regulated the oxidative stress pathway Keap1/Nrf2, promoted the expression of the downstream protective proteins HO-1 and Gpx4, and reduced intestinal apoptosis. Hence, B. subtilis and E. faecium alleviate colonic oxidative stress and inflammation in OA rats by improving fecal metabolism and enhancing the colonic barrier.
Collapse
Affiliation(s)
- Jilang Tang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaopeng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yingying Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Binger Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiming Yu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Sánchez-Pérez S, Comas-Basté O, Duelo A, Veciana-Nogués MT, Berlanga M, Vidal-Carou MC, Latorre-Moratalla ML. The dietary treatment of histamine intolerance reduces the abundance of some histamine-secreting bacteria of the gut microbiota in histamine intolerant women. A pilot study. Front Nutr 2022; 9:1018463. [PMID: 36337620 PMCID: PMC9633985 DOI: 10.3389/fnut.2022.1018463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Restrictive diets for the treatment of different gastrointestinal disorders are reported to change the composition of intestinal microbiota. Recently, it has been proposed that individuals with histamine intolerance suffer from intestinal dysbiosis, having an overabundance of histamine-secreting bacteria, but how it is still unknown this state is affected by the usual dietary treatment of histamine intolerance [i.e., low-histamine diet and the supplementation with diamine oxidase (DAO) enzyme]. Thus, a preliminary study was carried out aiming to evaluate the potential changes on the composition of the intestinal microbiota in a group of five women diagnosed with histamine intolerance undergoing 9 months of the dietary treatment of histamine intolerance. After sequencing bacterial 16S rRNA genes (V3-V4 region) and analyzing the data using the EzBioCloud Database, we observed a reduction in certain histamine-secreting bacteria, including the genera Proteus and Raoultella and the specie Proteus mirabilis. Moreover, it was also observed an increase in Roseburia spp., a bacterial group frequently related to gut health. These changes could help to explain the clinical improvement experienced by histamine intolerant women underwent a dietary treatment.
Collapse
Affiliation(s)
- Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- *Correspondence: Oriol Comas-Basté,
| | - Adriana Duelo
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- M. Teresa Veciana-Nogués,
| | - Mercedes Berlanga
- Departament de Biologia, Sanitat i Mediambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- M. Carmen Vidal-Carou,
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- M. Luz Latorre-Moratalla,
| |
Collapse
|
24
|
Sánchez-Pérez S, Celorio-Sardà R, Veciana-Nogués MT, Latorre-Moratalla ML, Comas-Basté O, Vidal-Carou MC. 1-methylhistamine as a potential biomarker of food histamine intolerance. A pilot study. Front Nutr 2022; 9:973682. [PMID: 36313101 PMCID: PMC9597364 DOI: 10.3389/fnut.2022.973682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Efforts are currently being directed to identify a non-invasive marker that can serve as a solid and clinically irrefutable diagnostic criterion for histamine intolerance associated with diamine oxidase (DAO) deficiency. Accordingly, the identification of biomarkers of histamine (HA) metabolism in urine is proposed as a possible new diagnostic strategy. It is hypothesized that individuals with histamine intolerance could have a different urinary profile of HA and its metabolites in comparison with the healthy population. Thus, the aim of this study was to assess the urinary excretion of HA and 1-methylhistamine (MHA) in individuals diagnosed with histamine intolerance and in a control group. Levels of HA and MHA were compared between 24 h and first morning spot urine in a subgroup of 14 control individuals. Then, HA and MHA concentrations in spot urine of 32 histamine intolerant and 55 control individuals were determined by ultra-high performance liquid chromatography and fluorometric detection (UHPLC-FL) and normalized by creatinine. No differences were found between HA and MHA levels in 24 h and first morning samples. Overall, histamine intolerant patients presented a distinct urinary excretion profile compared to the control group due to lower levels of MHA. No differences in urinary MHA were observed related to serum DAO activity. Spot urine samples were thus validated as a reliable tool to determine the urinary excretion of HA and MHA. These results constitute a starting point for the study of HA metabolomics as a suitable and non-invasive approach to histamine intolerance diagnosis.
Collapse
Affiliation(s)
- Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària, Barcelona, Spain
| | - Ricard Celorio-Sardà
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària, Barcelona, Spain
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària, Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària, Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària, Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària, Barcelona, Spain
| |
Collapse
|
25
|
Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators Inflamm 2022; 2022:6508046. [PMID: 36267243 PMCID: PMC9578915 DOI: 10.1155/2022/6508046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
There has been a significant amount of interest in the past two decades in the study of the evolution of the gut microbiota, its internal and external impacts on the gut, and risk factors for cerebrovascular disorders such as cerebral ischemic stroke. The network of bidirectional communication between gut microorganisms and their host is known as the microbiota-gut-brain axis (MGBA). There is mounting evidence that maintaining gut microbiota homeostasis can frequently enhance the effectiveness of ischemic stroke treatment by modulating immune, metabolic, and inflammatory responses through MGBA. To effectively monitor and cure ischemic stroke, restoring a healthy microbial ecology in the gut may be a critical therapeutic focus. This review highlights mechanistic insights on the MGBA in disease pathophysiology. This review summarizes the role of MGBA signaling in the development of stroke risk factors such as aging, hypertension, obesity, diabetes, and atherosclerosis, as well as changes in the microbiota in experimental or clinical populations. In addition, this review also examines dietary changes, the administration of probiotics and prebiotics, and fecal microbiota transplantation as treatment options for ischemic stroke as potential health benefits. It will become more apparent how the MGBA affects human health and disease with continuing advancements in this emerging field of biomedical sciences.
Collapse
|