1
|
Alahmadi S, Alanazi MM, Alasmari F, Al-Qahtani WS, Albasher G. The Efficiency of Chitosan Against Tert Butylhydroquinone (TBHQ)-Induced Neurobehavioral Changes and Toxicity Effects in Male Rats. FRONT BIOSCI-LANDMRK 2025; 30:26871. [PMID: 39862087 DOI: 10.31083/fbl26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys. METHODS Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ. RESULTS TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels. Behavioral tests, including the Morris Water Maze (MWM) as well as Passive Avoidance Learning (PAL) tasks, confirmed memory and learning deficits in the TBHQ group. Histopathological analysis showed damage in the brain, liver, and kidney tissues of TBHQ-exposed rats. Chitosan treatment significantly mitigated these effects, reducing oxidative stress markers and preserving tissue integrity. These findings suggest that chitosan's antioxidant properties may provide a therapeutic benefit against TBHQ-induced neurotoxicity and organ damage. CONCLUSIONS These findings suggest that chitosan exerts potent neuroprotective effects, potentially through its antioxidant and anti-inflammatory properties, and could serve as a therapeutic agent against TBHQ-induced toxicity.
Collapse
Affiliation(s)
- Shahad Alahmadi
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Fatemi F, Vaezi G, Sharafi S, Rahbarian R. 6-gingerol effect on rat liver following exposure to gold nanoparticles: From histopathologic findings to inflammatory and oxidative stress biomarkers. J Biochem Mol Toxicol 2024; 38:e23793. [PMID: 39234939 DOI: 10.1002/jbt.23793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Gold nanoparticles (AuNPs) have unique features which could be beneficial to various aspects of clinics and industry. Long-term exposure to AuNPs damages the physiologic functions and tissue structure of organs. Gingerol has anti-inflammatory and antioxidant properties. This study explored the effect of 6-gingerol on alleviation of AuNPs exposure effects in rats' liver. Thirty-two male Wistar rats were randomly assigned to four groups of negative control (received no AuNPs or treatment), positive control (received AuNPs but not treatment), and two study arms (both received AuNPs and one group 50 and the other 100 mg/Kg body weight 6-gingerol). All injections were performed intraperitoneally. After 30 days, serum levels of ALP, AST, ALT were assessed through ELISA method by an autoanalyzer while GGT, SOD, GPx, CAT, IL-6, IL-1β, TNF-α, CRP, 8-OHdG, MDA, and Bax/Bcl2 were measured using an ELISA reader. Paraffin-embedded tissue sections of the livers from all groups were also prepared and H&E staining was performed on them for investigation of tissue changes. Statistical analyses were performed using SPSS version 26 and p = 0.05 was considered as the level of significancy. AuNPs exposure significantly increased the levels of ALP, AST, ALT, GGT, CRP, IL-6, IL-1β, TNF-α, Bax/Bcl2, 8-OHdG, MDA (p < 0.001) in positive control groups compared to negative controls, while treatment with 6-gingerol significantly decreased the mentioned enzyme levels (p < 0.001). The level of antioxidant enzymes of SOD, GPx, and CAT, on the other hand, was found to be highest and lowest in negative and positive controls, respectively (p < 0.001). Treatment with 6-gingerol significantly decreased the mentioned enzyme levels (p < 0.001). Histology results showed no signs of degeneration, necrosis, or immune cell infiltration in negative controls, while positive controls showed dilated central veins and hyperemia along with infiltration of mononuclear immune cells to the portal area, tissue degeneration, and necrosis. The study arms showed improved signs as they showed normal trabecular structures with no clear portal space. Treatment with 6-gingerol seems to significantly and efficiently reduce the hepatic side effects of AuNPs exposure in Wistar rats.
Collapse
Affiliation(s)
- Fatemeh Fatemi
- Department of Animal Physiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
3
|
Lu S, Zhang K, Liu Y, Zhan X, Savari R. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis. ENVIRONMENTAL RESEARCH 2024; 245:117369. [PMID: 37827372 DOI: 10.1016/j.envres.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 μA/μM, a detection limit of 0.012 μM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 μM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.
Collapse
Affiliation(s)
- Shenyi Lu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Ke Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu Liu
- Guangxi Medical university, Nanning, 530021, China
| | | | - Rojan Savari
- School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, 1439955961, Iran
| |
Collapse
|
4
|
Aili M, Zhou K, Zhan J, Zheng H, Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer's disease. J Mater Chem B 2023; 11:8605-8621. [PMID: 37615596 DOI: 10.1039/d3tb01023f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive dysfunction and reduces a person's decision-making and reasoning functions. AD is the leading cause of dementia in the elderly. Patients with AD have increased expression of pro-inflammatory cytokines in the nervous system, and the sustained inflammatory response impairs neuronal function. Meanwhile, long-term use of anti-inflammatory drugs can reduce the incidence of AD to some extent. This confirms that anti-neuroinflammation may be an effective treatment for AD. Gold nanoparticles (AuNPs) are an emerging nanomaterial with promising physicochemical properties, anti-inflammatory and antioxidant. AuNPs reduce neuroinflammation by inducing macrophage polarization toward the M2 phenotype, reducing pro-inflammatory cytokine expression, blocking leukocyte adhesion, and decreasing oxidative stress. Therefore, AuNPs are gradually attracting the interest of scholars and are used for treating inflammatory diseases and drug delivery. Herein, we explored the role and mechanism of AuNPs in treating neuroinflammation in AD. The use of AuNPs for treating AD is a topic worth exploring in the future, not only to help solve a global public health problem but also to provide a reference for treating other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Munire Aili
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Kebing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China
| |
Collapse
|
5
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. Concomitant Sub-Chronic Administration of Small-Size Gold Nanoparticles Aggravates Doxorubicin-Induced Liver Oxidative and Inflammatory Damage, Hyperlipidemia, and Hepatic Steatosis. Molecules 2023; 28:796. [PMID: 36677854 PMCID: PMC9863023 DOI: 10.3390/molecules28020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
This study examined the effect of gold nanoparticles (AuNPs) on doxorubicin (DOX)-induced liver damage and steatosis in rats and tested its effect mechanism. Wistar male rats were divided into four groups (each of eight rats) as control, AuNPs (50 µL of 10 nm), DOX (15 mg/kg; 3 mg/kg/week), and DOX + AuNPs-treated rats. DOX is known to induce fasting hyperglycemia and hyperinsulinemia in treated rats. Individual treatment of both DOX and AuNPs also promoted liver damage, increased circulatory levels of ALT and AST, and stimulated serum and liver levels of TGs, CHOL, LDL-c, and FFAs. They also stimulated MDA, TNF-α, and IL-6, reduced GSH, SOD, HO-1, and CAT, upregulated mRNA levels of Bax and caspases-3 and -8 and downregulated mRNA levels of Bcl2 in the livers of rats. However, while DOX alone reduced hepatic levels of PPARα, both AuNPs and DOX stimulated mRNA levels of SREBP1, reduced the mRNA, cytoplasmic and nuclear levels of Nrf2, and increased mRNA, cytoplasmic, and nuclear levels of NF-κB. The liver damage and the alterations in all these parameters were significantly more profound when both AuNPs and DOX were administered together. In conclusion, AuNPs exaggerate liver damage, hyperlipidemia, and hepatic steatosis in DOX-treated rats by activating SREBP1 and NF-κB and suppressing the Nrf2/antioxidant axis.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Zhao Y, Liu X, Liang C, Pei T, Guo M, Wang J, Zhang J. α-Lipoic Acid Alleviated Fluoride-Induced Hepatocyte Injury via Inhibiting Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15962-15971. [PMID: 36459405 DOI: 10.1021/acs.jafc.2c07484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fluoride is widely used in agricultural production and food packaging. Excessive fluoride in water and food is a serious threat to liver health. α-Lipoic acid, a natural free radical scavenger, has hepatoprotective properties. However, the protective effect of α-lipoic acid on fluorohepatotoxicity is uncertain. The aim of this study was to investigate the mechanism of ferroptosis in α-lipoic acid preventing fluoride-induced hepatotoxicity. Five-week-old ICR mice were treated with sodium fluoride (100 mg/L) and/or α-lipoic acid (200 mg/kg) for 9 weeks. The results showed that α-lipoic acid attenuated fluoride-induced damage to liver morphology and ultrastructure. Moreover, α-lipoic acid alleviated fluoride-induced iron accumulation, increased oxidative stress, and elevated lipid peroxidation in the liver. In addition, the mechanism study found that α-lipoic acid prevented fluoride-induced ferroptosis through the System Xc-/GPX4 axis, lipid peroxidation axis, and iron metabolism axis, but it was interestingly not regulated by mitochondrial free radical axis in the hepatocytes. Altogether, this study indicated that α-lipoic acid prevents fluoride-induced liver injury by inhibiting ferroptosis, which has potential implications for the prevention and treatment of fluoride-induced liver injury.
Collapse
Affiliation(s)
- Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xueyan Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ting Pei
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mingyue Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
7
|
Therapeutic strategies for liver diseases based on redox control systems. Biomed Pharmacother 2022; 156:113764. [DOI: 10.1016/j.biopha.2022.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
|