1
|
Quartetti U, Brighina F, Gambino G, Frinchi M, Bellafiore M, Tabacchi G, Vasto S, Accardi G, Amato A, Giardina M, Mazzucco W, Boffetta P, Giglia G, Di Liberto V. Forecasting migraine attacks by managing daily lifestyle: a systematic review as a basis to develop predictive algorithms. Pain Rep 2025; 10:e1247. [PMID: 39917320 PMCID: PMC11801795 DOI: 10.1097/pr9.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 02/09/2025] Open
Abstract
Recent studies attempting to develop forecasting models for new migraine attack onsets, overviewing triggers and protectors, are encouraging but necessitate further improvements to produce forecasting models with high predictive accuracy. This updated review of available data holds the potential to enhance the precision of predicting a migraine attack. This study aims to evaluate how lifestyle factors affect migraine frequency in adults with episodic migraine, to contribute to the development of an effective migraine forecasting model. A comprehensive search of databases, including PubMed, ScienceDirect, Google Scholar, and Scopus, was conducted considering studies published from 2018 to December 2023, following the PRISMA guidelines. Critical evaluation was conducted using the Joanna Briggs Institute's appraisal tools. The lifestyle modifications examined in this review included dietary habits, physical activity, sleep, and stress management. Of the 36 studies analysed, which predominantly exhibited low to moderate bias, 18 investigated dietary habits, 7 explored physical activity, 11 assessed stress management, and 5 investigated sleep patterns. The evidence from these 36 studies advocates for the implementation of lifestyle modifications in migraine management. Furthermore, these outcomes carry valuable implications from the standpoint of migraine forecasting models. The most consistent results were observed in relation to specific diets, dietary supplements, and physical activity. Although trends were noted in stress management and sleep, further research is required to elucidate their influence on migraine frequency and their integration into a migraine forecasting model. This study is registered on PROSPERO (ID CRD42024511300).
Collapse
Affiliation(s)
- Umberto Quartetti
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Marianna Bellafiore
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Garden Tabacchi
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Marta Giardina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Walter Mazzucco
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, Palermo, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Di Majo D, Ricciardi N, Di Liberto V, Allegra M, Frinchi M, Urone G, Scordino M, Massaro A, Mudò G, Ferraro G, Sardo P, Giglia G, Gambino G. The remarkable impact of Opuntia Ficus Indica fruit administration on metabolic syndrome: Correlations between cognitive functions, oxidative stress and lipid dysmetabolism in the high-fat, diet-fed rat model. Biomed Pharmacother 2024; 177:117028. [PMID: 38959603 DOI: 10.1016/j.biopha.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND A wealth of evidence underscores the bioactive properties of nutraceuticals and functional foods in addressing oxyinflammatory-based diseases with implications at both peripheral and central levels. Opuntia ficus-indica (OFI) is well-documented for its health-promoting attributes, though its fruit (OFIF) remains relatively understudied. Not only poses Metabolic Syndrome (MetS) cardiometabolic risks but also contributes significantly to cognitive impairment, especially in crucial brain areas such as hippocampus and hypothalamus. METHODS Following 8 weeks of HFD to induce MetS, rats received OFIF oral supplementation for 4 weeks to evaluate cognitive and affective modifications using behavioural paradigms, i.e. open field, burrowing, white-dark box, novelty-suppressed feeding, and object recognition tests. Our investigation extended to biochemical evaluations of lipid homeostasis, central and peripheral oxidative stress and neurotrophic pathways, correlating these measures together with circulating leptin levels. RESULTS Our data revealed that OFIF modulation of leptin positively correlates with systemic and brain oxidative stress, with markers of increased anxiety-like behaviour and impaired lipid homeostasis. On the other hand, leptin levels reduced by OFIF are associated with improved antioxidant barriers, declarative memory and neurotrophic signalling. DISCUSSION This study underscores OFIF neuroactive potential in the context of MetS-associated cognitive impairment, offering insights into its mechanisms and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Valentina Di Liberto
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Mario Allegra
- Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Monica Frinchi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giulia Urone
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Miriana Scordino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Giuseppa Mudò
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Pierangelo Sardo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Giglia
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy.
| | - Giuditta Gambino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| |
Collapse
|
3
|
Hamel R, Oyler R, Harms E, Bailey R, Rendeiro C, Jenkinson N. Dietary Cocoa Flavanols Do Not Alter Brain Excitability in Young Healthy Adults. Nutrients 2024; 16:969. [PMID: 38613003 PMCID: PMC11013095 DOI: 10.3390/nu16070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The ingestion of dietary cocoa flavanols acutely alters functions of the cerebral endothelium, but whether the effects of flavanols permeate beyond this to alter other brain functions remains unclear. Based on converging evidence, this work tested the hypothesis that cocoa flavanols would alter brain excitability in young healthy adults. In a randomised, cross-over, double-blinded, placebo-controlled design, transcranial magnetic stimulation was used to assess corticospinal and intracortical excitability before as well as 1 and 2 h post-ingestion of a beverage containing either high (695 mg flavanols, 150 mg (-)-epicatechin) or low levels (5 mg flavanols, 0 mg (-)-epicatechin) of cocoa flavanols. In addition to this acute intervention, the effects of a short-term chronic intervention where the same cocoa flavanol doses were ingested once a day for 5 consecutive days were also investigated. For both the acute and chronic interventions, the results revealed no robust alteration in corticospinal or intracortical excitability. One possibility is that cocoa flavanols yield no net effect on brain excitability, but predominantly alter functions of the cerebral endothelium in young healthy adults. Future studies should increase intervention durations to maximize the acute and chronic accumulation of flavanols in the brain, and further investigate if cocoa flavanols would be more effective at altering brain excitability in older adults and clinical populations than in younger adults.
Collapse
Affiliation(s)
- Raphael Hamel
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca Oyler
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Evie Harms
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rosamond Bailey
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Catarina Rendeiro
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Ned Jenkinson
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Gambino G, Frinchi M, Giglia G, Scordino M, Urone G, Ferraro G, Mudò G, Sardo P, Di Majo D, Di Liberto V. Impact of “Golden” tomato juice on cognitive alterations in metabolic syndrome: Insights into behavioural and biochemical changes in a high-fat diet rat model. J Funct Foods 2024; 112:105964. [DOI: 10.1016/j.jff.2023.105964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
Gambino G, Giglia G, Allegra M, Di Liberto V, Zummo FP, Rappa F, Restivo I, Vetrano F, Saiano F, Palazzolo E, Avellone G, Ferraro G, Sardo P, Di Majo D. "Golden" Tomato Consumption Ameliorates Metabolic Syndrome: A Focus on the Redox Balance in the High-Fat-Diet-Fed Rat. Antioxidants (Basel) 2023; 12:antiox12051121. [PMID: 37237987 DOI: 10.3390/antiox12051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Tomato fruits defined as "golden" refer to a food product harvested at an incomplete ripening stage with respect to red tomatoes at full maturation. The aim of this study is to explore the putative influence of "golden tomato" (GT) on Metabolic Syndrome (MetS), especially focusing on the effects on redox homeostasis. Firstly, the differential chemical properties of the GT food matrix were characterized in terms of phytonutrient composition and antioxidant capacities with respect to red tomato (RT). Later, we assessed the biochemical, nutraceutical and eventually disease-modifying potential of GT in vivo in the high-fat-diet rat model of MetS. Our data revealed that GT oral supplementation is able to counterbalance MetS-induced biometric and metabolic modifications. Noteworthy is that this nutritional supplementation proved to reduce plasma oxidant status and improve the endogenous antioxidant barriers, assessed by strong systemic biomarkers. Furthermore, consistently with the reduction of hepatic reactive oxygen and nitrogen species (RONS) levels, treatment with GT markedly reduced the HFD-induced increase in hepatic lipid peroxidation and hepatic steatosis. This research elucidates the importance of food supplementation with GT in the prevention and management of MetS.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Mario Allegra
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Vetrano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Filippo Saiano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Eristanna Palazzolo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| |
Collapse
|