1
|
Murgiano M, Bartocci B, Puca P, di Vincenzo F, Del Gaudio A, Papa A, Cammarota G, Gasbarrini A, Scaldaferri F, Lopetuso LR. Gut Microbiota Modulation in IBD: From the Old Paradigm to Revolutionary Tools. Int J Mol Sci 2025; 26:3059. [PMID: 40243712 PMCID: PMC11988433 DOI: 10.3390/ijms26073059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders primarily comprising two main conditions: ulcerative colitis and Crohn's disease. The gut microbiota's role in driving inflammation in IBD has garnered significant attention, yet the precise mechanisms through which the microbiota influences IBD pathogenesis remain largely unclear. Given the limited therapeutic options for IBD, alternative microbiota-targeted therapies-including prebiotics, probiotics, postbiotics, and symbiotics-have been proposed. While these approaches have shown promising results, microbiota modulation is still mainly considered an adjunct therapy to conventional treatments, with a demonstrated impact on patients' quality of life. Fecal microbiota transplantation (FMT), already approved for treating Clostridioides difficile infection, represents the first in a series of innovative microbiota-based therapies under investigation. Microbial biotherapeutics are emerging as personalized and cutting-edge tools for IBD management, encompassing next-generation probiotics, bacterial consortia, bacteriophages, engineered probiotics, direct metabolic pathway modulation, and nanotherapeutics. This review explores microbial modulation as a therapeutic strategy for IBDs, highlighting current approaches and examining promising tools under development to better understand their potential clinical applications in managing intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Federica di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Alfredo Papa
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Rome, Italy
| |
Collapse
|
2
|
Noureldein MH, Rumora AE, Teener SJ, Rigan DM, Hayes JM, Mendelson FE, Carter AD, Rubin WG, Savelieff MG, Feldman EL. Dietary Fatty Acid Composition Alters Gut Microbiome in Mice with Obesity-Induced Peripheral Neuropathy. Nutrients 2025; 17:737. [PMID: 40005065 PMCID: PMC11858455 DOI: 10.3390/nu17040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Peripheral neuropathy (PN), a complication of diabetes and obesity, progresses through a complex pathophysiology. Lifestyle interventions to manage systemic metabolism are recommended to prevent or slow PN, given the multifactorial risks of diabetes and obesity. A high-fat diet rich in saturated fatty acids (SFAs) induces PN, which a diet rich in monounsaturated fatty acids (MUFAs) rescues, independent of weight loss, suggesting factors beyond systemic metabolism impact nerve health. Interest has grown in gut microbiome mechanisms in PN, which is characterized by a distinct microbiota signature that correlates with sciatic nerve lipidome. METHODS Herein, we postulated that SFA- versus MUFA-rich diet would impact gut microbiome composition and correlate with PN development. To assess causality, we performed fecal microbiota transplantation (FMT) from donor mice fed SFA- versus MUFA-rich diet to lean recipient mice and assessed metabolic and PN phenotypes. RESULTS We found that the SFA-rich diet altered the microbiome community structure, which the MUFA-rich diet partially reversed. PN metrics correlated with several microbial families, some containing genera with feasible mechanisms of action for microbiome-mediated effects on PN. SFA and MUFA FMT did not impact metabolic phenotypes in recipient mice although SFA FMT marginally induced motor PN. CONCLUSIONS The involvement of diet-mediated changes in the microbiome on PN and gut-nerve axis may warrant further study.
Collapse
Affiliation(s)
- Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E. Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Samuel J. Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew D. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Whitney G. Rubin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Lam HN, Lin SP, Nguyen DHN, Chen CM, Su CT, Fang TC, Li SC. Integrative Roles of Functional Foods, Microbiotics, Nutrigenetics, and Nutrigenomics in Managing Type 2 Diabetes and Obesity. Nutrients 2025; 17:608. [PMID: 40004938 PMCID: PMC11858703 DOI: 10.3390/nu17040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetes and obesity are globally prevalent metabolic disorders posing significant public health challenges. The effective management of these conditions requires integrated and personalized strategies. This study conducted a systematic literature review, identifying 335 relevant papers, with 129 core articles selected after screening for duplicates and irrelevant studies. The focus of the study is on the synergistic roles of functional foods, microbiotics, and nutrigenomics. Functional foods, including phytochemicals (e.g., polyphenols and dietary fibers), zoochemicals (e.g., essential fatty acids), and bioactive compounds from macrofungi, exhibit significant potential in enhancing insulin sensitivity, regulating lipid metabolism, reducing inflammatory responses, and improving antioxidant capacity. Additionally, the critical role of gut microbiota in metabolic health is highlighted, as its interaction with functional foods facilitates the modulation of metabolic pathways. Nutrigenomics, encompassing nutrigenetics and genomics, reveals how genetic variations (e.g., single-nucleotide polymorphisms (SNPs)) influence dietary responses and gene expression, forming a feedback loop between dietary habits, genetic variations, gut microbiota, and metabolic health. This review integrates functional foods, gut microbiota, and genetic insights to propose comprehensive and sustainable personalized nutrition interventions, offering novel perspectives for preventing and managing type 2 diabetes and obesity. Future clinical studies are warranted to validate the long-term efficacy and safety of these strategies.
Collapse
Affiliation(s)
- Hong Nhung Lam
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.N.L.); (D.H.N.N.)
| | - Shih-Ping Lin
- Department of Dietetics, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan;
| | - Dang Hien Ngan Nguyen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.N.L.); (D.H.N.N.)
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan;
| | - Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.N.L.); (D.H.N.N.)
| |
Collapse
|
4
|
Cai X, Huang J, Yu T, Guan X, Sun M, Zhao D, Zheng Y, Wang Q. Lactiplantibacillus plantarum BXM2 Treatment Alleviates Disorders Induced by a High-Fat Diet in Mice by Improving Intestinal Health and Modulating the Gut Microbiota. Nutrients 2025; 17:407. [PMID: 39940265 PMCID: PMC11820036 DOI: 10.3390/nu17030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Objective:Lactiplantibacillus plantarum BXM2 is a novel probiotic derived from fermented passion fruit (Passiflora edulis) juice that possesses promising probiotic potential. The aim of this study was to evaluate the beneficial effects of L. plantarum BXM2 supplementation in mice. Methods:L. plantarum BXM2 was orally administered to male SPF C57BL/6J mice fed a high-fat diet (HFD) to evaluate its anti-obesity potential, as well as the effects on intestinal health and microbiota. Results: Our results demonstrated that L. plantarum BXM2 significantly decreased the perirenal adipose index and improved intestinal health by increasing the ratio of villus height to crypt depth and the goblet cell number in the intestine. Furthermore, L. plantarum BXM2 treatment exhibited regulatory effects on intestinal chronic inflammation in mice by normalizing the mRNA expression of TNF-α and IL-6. Of note, L. plantarum BXM2 reversed HFD-induced gut dysbiosis, as evidenced by the decreased ratio of Bacillota (Firmicutes) to Bacteroidota, the decreased abundance of obesity-related genera Dubosiella, Romboutsia, and Lachnospiraceae_UCG006, and the increased abundance of beneficial genera Akkermansia and Lactobacillus. Conclusions: Our findings support the beneficial role of L. plantarum BXM2 supplementation in interventions targeting gut dysbiosis and obesity-related disorders.
Collapse
Affiliation(s)
- Xiaohui Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.C.); (M.S.)
| | - Juqing Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (J.H.); (X.G.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Tian Yu
- Bio-Fermentation Research Center, Xiamen Yuanzhidao Biotechnology Co., Ltd., Xiamen 361028, China; (T.Y.); (D.Z.)
| | - Xuefang Guan
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (J.H.); (X.G.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Meng Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.C.); (M.S.)
| | - Dazhou Zhao
- Bio-Fermentation Research Center, Xiamen Yuanzhidao Biotechnology Co., Ltd., Xiamen 361028, China; (T.Y.); (D.Z.)
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.C.); (M.S.)
| | - Qi Wang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (J.H.); (X.G.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| |
Collapse
|
5
|
Wu Y, Peng Y. Ten computational challenges in human virome studies. Virol Sin 2024; 39:845-850. [PMID: 38697263 PMCID: PMC11738758 DOI: 10.1016/j.virs.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
In recent years, substantial advancements have been achieved in understanding the diversity of the human virome and its intricate roles in human health and diseases. Despite this progress, the field of human virome research remains nascent, primarily hindered by the lack of effective methods, particularly in the domain of computational tools. This perspective systematically outlines ten computational challenges spanning various types of virome studies. These challenges arise due to the vast diversity of viromes, the absence of a universal marker gene in viral genomes, the low abundance of virus populations, the remote or minimal homology of viral proteins to known proteins, and the highly dynamic and heterogeneous nature of viromes. For each computational challenge, we discuss the underlying reasons, current research progress, and potential solutions. The resolution of these challenges necessitates ongoing collaboration among computational scientists, virologists, and multidisciplinary experts. In essence, this perspective serves as a comprehensive guide for directing computational efforts in human virome studies.
Collapse
Affiliation(s)
- Yifan Wu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
Vasileiadis A, Bozidis P, Konstantinidis K, Kesesidis N, Potamiti L, Kolliopoulou A, Beloukas A, Panayiotidis MI, Havaki S, Gorgoulis VG, Gartzonika K, Karakasiliotis I. A Novel Dhillonvirus Phage against Escherichia coli Bearing a Unique Gene of Intergeneric Origin. Curr Issues Mol Biol 2024; 46:9312-9329. [PMID: 39329903 PMCID: PMC11430396 DOI: 10.3390/cimb46090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Antibiotics resistance is expanding amongst pathogenic bacteria. Phage therapy is a revived concept for targeting bacteria with multiple antibiotics resistances. In the present study, we isolated and characterized a novel phage from hospital treatment plant input, using Escherichia coli (E. coli) as host bacterium. Phage lytic activity was detected by using soft agar assay. Whole-genome sequencing of the phage was performed by using Next-Generation Sequencing (NGS). Host range was determined using other species of bacteria and representative genogroups of E. coli. Whole-genome sequencing of the phage revealed that Escherichia phage Ioannina is a novel phage within the Dhillonvirus genus, but significantly diverged from other Dhillonviruses. Its genome is a 45,270 bp linear double-stranded DNA molecule that encodes 61 coding sequences (CDSs). The coding sequence of CDS28, a putative tail fiber protein, presented higher similarity to representatives of other phage families, signifying a possible recombination event. Escherichia phage Ioannina lytic activity was broad amongst the E. coli genogroups of clinical and environmental origin with multiple resistances. This phage may present in the future an important therapeutic tool against bacterial strains with multiple antibiotic resistances.
Collapse
Affiliation(s)
- Anastasios Vasileiadis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45332 Ioannina, Greece; (P.B.); (K.G.)
| | - Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45332 Ioannina, Greece; (P.B.); (K.G.)
| | - Konstantinos Konstantinidis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
| | - Nikolaos Kesesidis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.P.); (M.I.P.)
| | - Anna Kolliopoulou
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (A.K.); (A.B.)
| | - Apostolos Beloukas
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (A.K.); (A.B.)
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.P.); (M.I.P.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45332 Ioannina, Greece; (P.B.); (K.G.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
| |
Collapse
|
7
|
Li X, Liu S, Wu H, Li B, Li Y, Li R, Tang D, Zhang H. Viral metagenomics combined with non-targeted serum metabolomics reveals the role of enteroviruses in a mouse model of coronary heart disease. Virol J 2024; 21:169. [PMID: 39080726 PMCID: PMC11290145 DOI: 10.1186/s12985-024-02412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is a common cardiovascular disease that is associated with altered gut microbiota. Enteroviruses, an essential component of the gut microbiome, may play an important role in disease progression. However, the relationship between enteroviruses and CHD remains unclear. The development of high-throughput sequencing technologies has facilitated research on the interconnections between viruses and disease-related metabolites. METHODS AND RESULTS Mice were fed a high-fat diet (CHD group) or chow diet (Sham group) for 12 weeks, and ligation of the left anterior descending coronary artery was performed at the end of week 8. After 4 weeks, all animals were euthanised. Subsequently, the animals were evaluated for basic haemato-biochemical parameters and cardiac function, and aorta staining was performed. Based on enteroviral metagenomics and serum UPLC-MS/MS metabolomics analyses, we evaluated the association between enteroviral groups and serum metabolites of CHD mouse model. A high-fat diet and coronary ligation enabled the establishment of the CHD mouse model. Notably, the enterovirus spectrum of the sham group was significantly different from that of the CHD group, with 24 viral communities of different family and species classification, such as Tsarbombavirus, Mingyongvirus, Claudivirus, and Firehammervirus, exhibiting significant differences. In addition, 731 Differential metabolites were detected in the serum of both groups of mice. Correlation network analysis revealed a close relationship between various metabolites related to lipid metabolism and different viruses, including Tsarbombavirus, Mingyongvirus, Claudivirus, and Firehammervirus. CONCLUSIONS An animal model of CHD, characterised by lipid disturbance and myocardial ischaemia, was established using a high-fat diet and ligation of the left anterior descending branch of the coronary artery. Tsarbombavirus, Firehammervirus, Mingyongvirus, and Claudivirus were associated with metabolites in the lipid metabolism pathway. The results indicate that Tsarbombavirus may be the main genus interacting with CHD-related metabolites in mice. Conclusively, the findings of our study provide novel insights into the potential relationship enterovirus groups and metabolites associated with CHD.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sihong Liu
- Institute of Traditional Chinese Medicine Information, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haonan Wu
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Li
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoqi Li
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danli Tang
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huamin Zhang
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Chen CM, Yan QL, Guo RC, Tang F, Wang MH, Yi HZ, Huang CX, Liu C, Wang QY, Lan WY, Jiang Z, Yang YZ, Wang GY, Zhang AQ, Ma J, Zhang Y, You W, Ullah H, Zhang Y, Li SH, Yao XM, Sun W, Ma WK. Distinct characteristics of the gut virome in patients with osteoarthritis and gouty arthritis. J Transl Med 2024; 22:564. [PMID: 38872164 PMCID: PMC11170907 DOI: 10.1186/s12967-024-05374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND/PURPOSE(S) The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.
Collapse
Affiliation(s)
- Chang-Ming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Fang Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Min-Hui Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Han-Zhi Yi
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chun-Xia Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Can Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiu-Yi Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei-Ya Lan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zong Jiang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu-Zheng Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guang-Yang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | | | - Xue-Ming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wen Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.
| | - Wu-Kai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
9
|
Zhu A, Li P, Chu Y, Wei X, Zhao J, Luo L, Zhang T, Yan J. Causal effects of gut microbiota on the prognosis of ischemic stroke: evidence from a bidirectional two-sample Mendelian randomization study. Front Microbiol 2024; 15:1346371. [PMID: 38650876 PMCID: PMC11033378 DOI: 10.3389/fmicb.2024.1346371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Background Increasing research has implicated the possible effect of gut microbiota (GM) on the prognosis of ischemic stroke (IS). However, the precise causal relationship between GM and functional outcomes after IS remains unestablished. Methods Data on 211 GM taxa from the MiBioGen consortium and data on prognosis of IS from the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network were utilized as summary-level data of exposure and outcome. Four kinds of Mendelian randomization (MR) methods were carried out to ascertain the causal effect of GM on functional outcomes following IS. A reverse MR analysis was performed on the positive taxa identified in the forward MR analysis to determine the direction of causation. In addition, we conducted a comparative MR analysis without adjusting the baseline National Institute of Health Stroke Scale (NIHSS) of post-stroke functional outcomes to enhance confidence of the results obtained in the main analysis. Results Four taxa were identified to be related to stroke prognosis in both main and comparative analyses. Specifically, genus Ruminococcaceae UCG005 and the Eubacterium oxidoreducens group showed significantly negative effects on stroke prognosis, while the genus Lachnospiraceae NK4A136 group and Lachnospiraceae UCG004 showed protective effects against stroke prognosis. The reverse MR analysis did not support a causal role of stroke prognosis in GM. No evidence of heterogeneity, horizontal pleiotropy, and outliers was found. Conclusion This MR study provided evidence that genetically predicted GM had a causal link with post-stroke outcomes. Specific gut microbiota taxa associated with IS prognosis were identified, which may be helpful to clarify the pathogenesis of ischemic stroke and making treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Zhang
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juntao Yan
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Li Y, Wang X, Zhang Z, Shi L, Cheng L, Zhang X. Effect of the gut microbiome, plasma metabolome, peripheral cells, and inflammatory cytokines on obesity: a bidirectional two-sample Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1348347. [PMID: 38558794 PMCID: PMC10981273 DOI: 10.3389/fimmu.2024.1348347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Obesity is a metabolic and chronic inflammatory disease involving genetic and environmental factors. This study aimed to investigate the causal relationship among gut microbiota abundance, plasma metabolomics, peripheral cell (blood and immune cell) counts, inflammatory cytokines, and obesity. Methods Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400 plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells, N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits (N = 8,293), and 6 obesity traits were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis was applied to infer the causal links using inverse variance-weighted, maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR results. Finally, we used mediation analysis to identify the pathway from gut microbiota to obesity mediated by plasma metabolites, peripheral cells, and inflammatory cytokines. Results MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among them, five shared causal gut microbiota taxa belonged to the phylum Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus Lachnospiraceae UCG008, and species Eubacterium nodatum group. Furthermore, we screened 42 shared causal metabolites, 7 shared causal peripheral cells, and 1 shared causal inflammatory cytokine. Based on known causal metabolites, we observed that the metabolic pathways of D-arginine, D-ornithine, linoleic acid, and glycerophospholipid metabolism were closely related to obesity. Finally, mediation analysis revealed 20 mediation relationships, including the causal pathway from gut microbiota to obesity, mediated by 17 metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis represented no heterogeneity or pleiotropy in this study. Conclusion Our findings support a causal relationship among gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These biomarkers provide new insights into the mechanisms underlying obesity and contribute to its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ying Li
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Xin Wang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liang Cheng
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Yang M, Bi W, Zhang Z. Gut microbiota and risk of endocarditis: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1320095. [PMID: 38298894 PMCID: PMC10827985 DOI: 10.3389/fmicb.2024.1320095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Background The associations between gut microbiota and cardiovascular disease have been reported in previous studies. However, the relationship between gut microbiota and endocarditis remains unclear. Methods A bidirectional Mendelian randomization (MR) study was performed to detect the association between gut microbiota and endocarditis. Inverse variance weighted (IVW) method was considered the main result. Simultaneously, heterogeneity and pleiotropy tests were conducted. Results Our study suggests that family Victivallaceae (p = 0.020), genus Eubacterium fissicatena group (p = 0.047), genus Escherichia Shigella (p = 0.024), genus Peptococcus (p = 0.028) and genus Sellimonas (p = 0.005) play protective roles in endocarditis. Two microbial taxa, including genus Blautia (p = 0.006) and genus Ruminococcus2 (p = 0.024) increase the risk of endocarditis. At the same time, endocarditis has a negative effect on genus Eubacterium fissicatena group (p = 0.048). Besides, no heterogeneity or pleiotropy was found in this study. Conclusion Our study emphasized the certain role of specific gut microbiota in patients with endocarditis and clarified the negative effect of endocarditis on gut microbiota.
Collapse
Affiliation(s)
- Mengyue Yang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wen Bi
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhijie Zhang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
12
|
Pavia G, Marascio N, Matera G, Quirino A. Does the Human Gut Virome Contribute to Host Health or Disease? Viruses 2023; 15:2271. [PMID: 38005947 PMCID: PMC10674713 DOI: 10.3390/v15112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The human gastrointestinal (GI) tract harbors eukaryotic and prokaryotic viruses and their genomes, metabolites, and proteins, collectively known as the "gut virome". This complex community of viruses colonizing the enteric mucosa is pivotal in regulating host immunity. The mechanisms involved in cross communication between mucosal immunity and the gut virome, as well as their relationship in health and disease, remain largely unknown. Herein, we review the literature on the human gut virome's composition and evolution and the interplay between the gut virome and enteric mucosal immunity and their molecular mechanisms. Our review suggests that future research efforts should focus on unraveling the mechanisms of gut viruses in human homeostasis and pathophysiology and on developing virus-prompted precision therapies.
Collapse
Affiliation(s)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | | | | |
Collapse
|