1
|
Ye R, Mao YM, Fei YR, Shang Y, Zhang T, Zhang ZZ, Liu YL, Li JY, Chen SL, He YB. Targeting ferroptosis for the treatment of female reproductive system disorders. J Mol Med (Berl) 2025; 103:381-402. [PMID: 40100417 DOI: 10.1007/s00109-025-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a critical factor in female reproductive health and has been implicated in disorders such as polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, and ovarian cancer. This review explores the intricate molecular mechanisms underlying ferroptosis, emphasizing its reliance on iron metabolism and oxidative stress, which disrupt key processes in reproductive tissues, including granulosa cell function, folliculogenesis, and embryo implantation. Increasing evidence linking ferroptosis to these conditions offers new therapeutic opportunities, with iron chelators, lipid peroxidation inhibitors, and antioxidants showing the potential to alleviate reproductive dysfunction by modulating ferroptotic pathways. In ovarian cancer, ferroptosis inducers combined with conventional cancer therapies, such as chemotherapy, provide promising strategies to overcome drug resistance. This review synthesizes current knowledge on ferroptosis and highlights its importance as a therapeutic target in reproductive health, emphasizing the need for further research to refine and expand treatment options, evaluate their applicability in clinical settings, and explore their role in fertility preservation. By advancing our understanding of ferroptosis regulation, these therapeutic approaches could lead to novel treatments for reproductive disorders and cancers, offering new hope for improving outcomes in women's health and cancer therapy.
Collapse
Affiliation(s)
- Rui Ye
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Zhejiang Province, China
| | - Yi-Ran Fei
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yue Shang
- Reproductive Center, Hainan Branch, Shanghai Children'S Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Ting Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhe-Zhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yong-Lin Liu
- Reproductive Center, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jun-Yu Li
- Department of Pharmacy, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Shi-Liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
An J, Zhou Q, Guo X, Xu C, Jia X, Cao Z, Lu Q. From Pathophysiology to Treatment: The Role of Ferroptosis in PCOS. FRONT BIOSCI-LANDMRK 2025; 30:25586. [PMID: 40018919 DOI: 10.31083/fbl25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 03/01/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological endocrine and metabolic disorder in women, with an incidence rate of 10-13%. The etiology of PCOS is multifaceted, involving genetic predisposition, environmental influences, lifestyle factors, and endocrine metabolic dysregulation. Iron, a critical mineral, not only plays a role in regulating female physiological functions and the progression of PCOS but also requires careful management to avoid deficiency. However, excess iron can trigger ferroptosis, a form of nonapoptotic cell death characterized by the accumulation of lipid peroxides. While numerous studies have explored ferroptosis in patients with PCOS and animal models, the precise mechanisms and therapeutic implications remain inadequately understood. This review seeks to elucidate the pathophysiology of PCOS and the contributory factors of ferroptosis. Additionally, we examine the diverse manifestations of ferroptosis in PCOS and evaluate its role. Furthermore, we introduce ferroptosis-related traditional Chinese medicines that may enhance the understanding of PCOS pathogenesis and aid in the development of targeted therapies for ferroptosis in PCOS.
Collapse
Affiliation(s)
- Jie An
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qin Zhou
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Xiaojing Guo
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Congya Xu
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - XiaoFang Jia
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Zhenzhen Cao
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qibin Lu
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Zhou Q, Ouyang X, Tang H, Wang Y, Hua Y, Li L. Atractylodin alleviates polycystic ovary syndrome by inhibiting granule cells ferroptosis through pyruvate dehydrogenase kinase 4-mediated JAK-STAT3 pathway. Int Immunopharmacol 2025; 146:113817. [PMID: 39724732 DOI: 10.1016/j.intimp.2024.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder, and its close relationship with oxidative stress has been well-documented. Atractylodin (ATR) plays a role in the treatment of many diseases through its antioxidant function. However, its function in PCOS remains unexplored. In this study, the function and underlying mechanisms of ATR in mitigating PCOS symptoms were investigated. METHODS A mouse model of PCOS induced using DHEA and a high-fat diet was established, and many factors such as hormone levels (FSH, LH, testosterone, and progesterone), the estrous cycle, and ovarian shape were evaluated. In vitro, PCOS model was established by DHEA-induced KGN cell, and the effects of ATR on ferroptosis and oxidative stress markers were explored. Specifically, the viability of KGN cells treated with ATR was assessed using the CCK-8 assay, and the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) were measured to evaluate oxidative stress. Expression of ferroptosis-related genes (NRF2, GPX4, SLC7A11) and PDK4 was analyzed by qRT-PCR and Western blotting. PDK4's interaction with ATR was examined through molecular docking and confirmed by surface plasmon resonance (SPR) analysis. RESULTS Our data show that the treatment of ATR markedly increased hormone levels and improved normal estrous cycles. Moreover, ATR was found to improve ovarian morphology by decreasing cystic dilatation and increasing the number of corpora lutea. Mechanistically, our research found that ATR regulates the expression of PDK4 by binding to its GLY331 and inhibits granulosa cell ferroptosis by regulating the JAK-STAT3 pathway mediated by PDK4. CONCLUSIONS In conclusion, our study suggest that ATR may be a therapeutic option for managing PCOS and PDK4 could be a target for the development of new drugs for PCOS.
Collapse
Affiliation(s)
- Qi Zhou
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaoling Ouyang
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Hong Tang
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yongfeng Wang
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yu Hua
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Linxia Li
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
4
|
Yang L, Chen J, Miao H, Li N, Bi H, Feng R, Miao C. The landscape of alternative splicing in granulosa cells and a potential novel role of YAP1 in PCOS. PLoS One 2024; 19:e0315750. [PMID: 39671393 PMCID: PMC11642958 DOI: 10.1371/journal.pone.0315750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent yet complex reproductive endocrine disorder affecting 11-13% of women worldwide. Its main symptoms include elevated androgen levels, irregular menstrual cycles, and long-term metabolic and offspring health implications. Despite the disease's multifaceted nature involving genetic, epigenetic, and environmental factors, the role of alternative splicing in ovarian granulosa cells remains relatively unexplored. This study aims to investigate the transcriptional and alternative splicing characteristics of granulosa cells in PCOS patients and to elucidate the potential functional consequences of these changes. Analysis of previous published transcriptome sequencing data identified 491 upregulated and 401 downregulated genes in granulosa cells of PCOS patients, significantly involved in immune-related processes. Additionally, 1250 differential splicing events, predominantly involving exon skipping and affecting 947 genes, were detected. These genes with alternative splicing patterns were found to be enriched in endoplasmic reticulum stress and protein post-translational modification processes, suggesting their role in PCOS pathology. Moreover, the study highlighted that the utilization of different splice isoforms of the YAP1 gene may impact its interaction in the Hippo signaling pathway, influencing the pathogenesis of PCOS. These findings underscore substantial alterations in alternative splicing in granulosa cells of PCOS patients, providing a novel viewpoint for comprehending the molecular underpinnings of PCOS and suggesting potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Jianhua Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Hui Miao
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Na Li
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Huilin Bi
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| |
Collapse
|
5
|
Zhu J, Wang JX, Jin ZY, Li D, Qi S, Han SZ, Chang SY, Yan J, Kang JD, Quan LH. Eicosatrienoic acid inhibits estradiol synthesis through the CD36/FOXO1/CYP19A1 signaling pathway to improve PCOS in mice. Biochem Pharmacol 2024; 229:116517. [PMID: 39236935 DOI: 10.1016/j.bcp.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disorder characterized by abnormal elevation in hormone levels, with currently lacking effective treatment options. N-3 polyunsaturated fatty acids (PUFA) have broad pharmacological activity and play a beneficial role in the development of PCOS. In this study, we observed that n-3 PUFA-eicosatrienoic acid (ETA) improves the estrous cycle and ovarian morphology in dehydroepiandrosterone (DHEA)-induced PCOS mice, particularly serum hormone levels. Additionally, it suppresses the expression of CYP19A1 and E2 synthesis in human granulosa-like tumor cell line (KGN) cells. Further investigation revealed that ETA significantly upregulates the expression of CD36, cAMP, P-PKA, and FOXO1 in KGN cells and mouse ovaries to lower E2 levels. This conclusion was supported by inhibiting CD36 and FOXO1 at both the mouse and cellular levels. Additionally, ETA treatment decreased the expression of ESR1, Kiss1, Gnrh in the hypothalamus, and GnRHR, Lhβ, Egr1, Pitx1, Sf1 in the pituitary of PCOS mice. No differences were observed after ETA treatment in the CD36 and FOXO1 inhibitor groups, indicating that ETA improves PCOS mice by regulating the hypothalamic-pituitary axis through E2 synthesis inhibition. In summary, we have elucidated for the first time the mechanism by which CD36 regulates E2 synthesis in ovarian granulosa cells and demonstrated that ETA activates the CD36 receptor to inhibit E2 synthesis through the cAMP/PKA/FOXO1/CYP19A1 signaling pathway, thereby improving hormonal imbalance and treating PCOS. This provides a new strategy for the effective prevention and treatment of PCOS.
Collapse
Affiliation(s)
- Jun Zhu
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Dongxu Li
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Shaobo Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Jin Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China.
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
6
|
Hong H, Xiao C, Weng L, Wang Q, Lai D. The effect of norepinephrine on ovarian dysfunction by mediating ferroptosis in mice model. Acta Biochim Biophys Sin (Shanghai) 2024; 57:542-553. [PMID: 39439417 DOI: 10.3724/abbs.2024187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Studies have shown that stress is associated with ovarian dysfunction. Norepinephrine (NE), a classic stress hormone involved in the stress response, is less recognized for its role in ovarian function. In this study, an NE-treated mouse model is induced by intraperitoneal injection of NE for 4 weeks. Compared with normal control mice, NE-treated mice show disturbances in the estrous cycle, decreased levels of anti-Mullerian hormone (AMH) and estradiol (E2), and increased level of follicle-stimulating hormone (FSH). Additionally, the numbers of primordial follicles, primary follicles, secondary follicles, and antral follicles are decreased, whereas the number of atretic follicles is increased in NE-treated mice, indicating NE-induced ovarian dysfunction. RNA sequencing further reveals that genes associated with ferroptosis are significantly enriched in NE-treated ovarian tissues. Concurrently, the levels of reactive oxygen species (ROS), ferrous ions, and malondialdehyde (MDA) are increased, whereas the expression level of glutathione peroxidase 4 (GPX4) is decreased. To elucidate the mechanism of NE-induced ferroptosis in ovaries and the potential reversal by Coenzyme Q10 (CoQ10), an antioxidant, we conduct both in vitro and in vivo experiments. In vitro, the granulosa cell line KGN, when treated with NE, shows decreased cell viability, reduced expression of GPX4, elevated levels of ferrous ion and ROS, and increased MDA level. However, these NE-induced changes are reversed by the addition of CoQ10. Compared with the NE group, the NE-treated mice supplemented with CoQ10 present increased GPX4 level and decreased iron, ROS, and MDA levels. Moreover, the differential expression of genes associated with ferroptosis induced by NE is ameliorated by CoQ10 in NE-treated mice. Additionally, CoQ10 improves ovarian function, as evidenced by increased ovarian weight, more regular estrous cycles, and an increase in follicles at various stages of growth in NE-treated mice. In conclusion, NE induces ovarian dysfunction by triggering ferroptosis in ovarian tissues, and CoQ10 represents a promising approach for protecting reproductive function by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hanqing Hong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Lichun Weng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| |
Collapse
|
7
|
He J, Liu A, Shen H, Jiang Y, Gao M, Yu L, Du W, Zhang X, Fu F. Shared diagnostic genes and potential mechanisms between polycystic ovary syndrome and recurrent miscarriage revealed by integrated transcriptomics analysis and machine learning. Front Endocrinol (Lausanne) 2024; 15:1335106. [PMID: 39398336 PMCID: PMC11466764 DOI: 10.3389/fendo.2024.1335106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Objective More and more studies have found that polycystic ovary syndrome (PCOS) is significantly associated with recurrent spontaneous abortion (RSA), but the specific mechanism is not yet clear. Methods Based on the GEO database, we downloaded the PCOS (GSE10946, GSE6798 and GSE137684) and RSA (GSE165004, GSE26787 and GSE22490) datasets and performed differential analysis, weighted gene co-expression network (WGCNA), functional enrichment, and machine learning, respectively, on the datasets of the two diseases, Nomogram and integrated bioinformatics analysis such as immune infiltration analysis. Finally, the reliability of the diagnostic gene was verified by external verification and collection of human specimens. Results In this study, PCOS and RSA datasets were obtained from Gene Expression Omnibus (GEO) database, and a total of 23 shared genes were obtained by differential analysis and WGCNA analysis. GO results showed that the shared genes were mainly enriched in the functions of lipid catabolism and cell cycle transition (G1/S). DO enrichment revealed that shared genes are mainly involved in ovarian diseases, lipid metabolism disorders and psychological disorders. KEGG analysis showed significant enrichment of Regulation of lipolysis in adipocytes, Prolactin signaling pathway, FoxO signaling pathway, Hippo signaling pathway and other pathways. A diagnostic gene FAM166 B was obtained by machine learning and Nomogram screening, which mainly played an important role in Cellular component. GSEA analysis revealed that FAM166B may be involved in the development of PCOS and RSA by regulating the cell cycle, amino acid metabolism, lipid metabolism, and carbohydrate metabolism. CIBERSORT analysis showed that the high expression of FAM166 B was closely related to the imbalance of multiple immune cells. Further verification by qPCR suggested that FAM166 B could be used as a common marker of PCOS and RSA. Conclusions In summary, this study identified FAM166B as a common biomarker for PCOS and RSA, and conducted in-depth research and analysis of this gene, providing new data for basic experimental research and early prognosis, diagnosis and treatment of clinical diseases.
Collapse
Affiliation(s)
- Juanjuan He
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Ahui Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Min Gao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liulin Yu
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Du
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuehong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Wu S, Gan M, Wang Y, Pan Y, He Y, Feng J, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Shen L. Copper mediated follicular atresia: Implications for granulosa cell death. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135391. [PMID: 39106724 DOI: 10.1016/j.jhazmat.2024.135391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
3-nitropropanoic acid is a potent oxidative stress inducer that is conventionally regarded as a regulator of follicular atresia by regulating granulosa cells (GCs) death through the apoptosis pathway. There has been no research investigating the impact of copper metal overload induced Cuproptosis in ovarian GCs as a factor contributing to hindered follicular development.To elucidate whether 3-NP-induced oxidative stress plays a contributory role in promoting Cuproptosis, and discuss the role of Cuproptosis in the development of ovarian follicles.We conducted an analysis of cuproptosis occurrence in murine GCs and C57BL/6 J mice under the influence of 3-NP and 3-NP with added exogenous copper.The results revealed that 3-NP serving as a robust facilitator of exogenous copper uptake by upregulating the expression of copper transporter 1 (CTR1). In turn, culminated in the accumulation of intracellular copper within mouse granulosa cells (mGCs). Furthermore, 3-NP promoted mitochondrial permeability transition pore opening and concurrently reduced the stability of lipoic acid proteins. These actions collectively induced the oligomerization of Dihydrolipoamide S-Acetyltransferase (DLAT), ultimately leading to cuproptosis in GCs and consequent follicular atresia. Heavy metal copper and fungal decomposition product 3-NP, induce ovarian atresia via cuproptosis, modulating the reproductive performance of female animals.
Collapse
Affiliation(s)
- Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Wang M, Zhang BQ, Ma S, Xu Y, Zhao DH, Zhang JS, Li CJ, Zhou X, Zheng LW. Broadening horizons: the role of ferroptosis in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1390013. [PMID: 39157678 PMCID: PMC11327064 DOI: 10.3389/fendo.2024.1390013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common heterogeneous reproductive endocrine metabolic disorder in women of reproductive age characterized by clinical and biochemical hyperandrogenemia, ovulation disorders, and polycystic ovarian morphology. Ferroptosis is a novel type of cell death driven by iron accumulation and lipid peroxidation. Ferroptosis plays a role in maintaining redox balance, iron metabolism, lipid metabolism, amino acid metabolism, mitochondrial activity, and many other signaling pathways linked to diseases. Iron overload is closely related to insulin resistance, decreased glucose tolerance, and the occurrence of diabetes mellitus. There is limited research on the role of ferroptosis in PCOS. Patients with PCOS have elevated levels of ferritin and increased reactive oxygen species in ovarian GCs. Studying ferroptosis in PCOS patients is highly important for achieving personalized treatment. This article reviews the progress of research on ferroptosis in PCOS, introduces the potential connections between iron metabolism abnormalities and oxidative stress-mediated PCOS, and provides a theoretical basis for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Bo-Qi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical College, Jilin, China
| | - Jing-Shun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Chun-Jin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang M, Wang Y, Di J, Zhang X, Liu Y, Zhang Y, Li B, Qi S, Cao X, Liu L, Liu S, Xu F. High coverage of targeted lipidomics revealed lipid changes in the follicular fluid of patients with insulin-resistant polycystic ovary syndrome and a positive correlation between plasmalogens and oocyte quality. Front Endocrinol (Lausanne) 2024; 15:1414289. [PMID: 38904043 PMCID: PMC11187234 DOI: 10.3389/fendo.2024.1414289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Background Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the most common endocrine and metabolic disease in women of reproductive age, and low fertility in PCOS patients may be associated with oocyte quality; however, the molecular mechanism through which PCOS-IR affects oocyte quality remains unknown. Methods A total of 22 women with PCOS-IR and 23 women without polycystic ovary syndrome (control) who underwent in vitro fertilization and embryo transfer were recruited, and clinical information pertaining to oocyte quality was analyzed. Lipid components of follicular fluid (FF) were detected using high-coverage targeted lipidomics, which identified 344 lipid species belonging to 19 lipid classes. The exact lipid species associated with oocyte quality were identified. Results The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of 2PN cleaved embryos, and the number of high-quality embryos were significantly lower in the PCOS-IR group. A total of 19 individual lipid classes and 344 lipid species were identified and quantified. The concentrations of the 19 lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the PCOS-IR group, among which plasmalogens were positively correlated with oocyte quality. Conclusions This study measured the levels of various lipids in follicular fluid, identified a significantly altered lipid profile in the FF of PCOS-IR patients, and established a correlation between poor oocyte quality and plasmalogens in PCOS-IR patients. These findings have contributed to the development of plasmalogen replacement therapy to enhance oocyte quality and have improved culture medium formulations for oocyte in vitro maturation (IVM).
Collapse
Affiliation(s)
- Meizi Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yuanyuan Wang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Jianyong Di
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xuanlin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yixin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Bowen Li
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaomin Cao
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Li Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Shouzeng Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
11
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
12
|
Zhang J, Su T, Fan Y, Cheng C, Xu L, LiTian. Spotlight on iron overload and ferroptosis: Research progress in female infertility. Life Sci 2024; 340:122370. [PMID: 38141854 DOI: 10.1016/j.lfs.2023.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Iron is an essential trace element for organisms. However, iron overload, which is common in haematological disorders (e.g. haemochromatosis, myelodysplastic syndromes, aplastic anaemia, and thalassaemia, blood transfusion-dependent or not), can promote reactive oxygen species generation and induce ferroptosis, a novel form of programmed cell death characterised by excess iron and lipid peroxidation, thus causing cell and tissue damage. Infertility is a global health concern. Recent evidence has indicated the emerging role of iron overload and ferroptosis in female infertility by inducing hypogonadism, causing ovary dysfunction, impairing preimplantation embryos, attenuating endometrial receptivity, and crosstalk between subfertility-related disorders, such as polycystic ovary syndrome and endometriosis. In addition, gut microbiota and their metabolites are involved in iron metabolism, ferroptosis, and female infertility. In this review, we systematically elaborate on the current research progress in female infertility with a novel focus on iron overload and ferroptosis and summarise promising therapies targeting iron overload and ferroptosis to recover fertility in women. In summary, our study provides new insights into female infertility and offers literature references for the clinical management of female infertility associated with iron overload and ferroptosis, which may be beneficial for females with haematopoietic disorders suffering from both iron overload and infertility.
Collapse
Affiliation(s)
- Jinghua Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Tiantian Su
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Yuan Fan
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Cheng Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - LiTian
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
13
|
Yao Y, Wang B, Jiang Y, Guo H, Li Y. The mechanisms crosstalk and therapeutic opportunities between ferroptosis and ovary diseases. Front Endocrinol (Lausanne) 2023; 14:1194089. [PMID: 37564979 PMCID: PMC10411981 DOI: 10.3389/fendo.2023.1194089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Ferroptosis, a form of regulated cell death, was first defined in 2012. Ferroptosis mainly involves iron-driven lipid peroxidation damage of cells. This process is regulated by iron homeostasis, redox balance, lipid metabolism, glutathione metabolism, and various disease signaling pathways. Iron is one of the key mineral elements that regulate the physiological function of women and the development of ovarian tumors. Occurrence of Ferroptosis has some hidden dangers and advantages in ovary diseases. Some scholars have shown that ferroptosis of ovarian granulosa cells (GC) promotes the development of ovarian dysfunction and polycystic ovary syndrome (PCOS). Interestingly, drug-resistant ovarian cancer cells are very sensitive to ferroptosis, suggesting that pharmacological positive and negative regulation of ferroptosis has great potential in the treatment of benign ovarian diseases and ovarian cancer. This article aimed to assess how ferroptosis occurs and the factors controlling ferroptosis. Moreover, we summarize how ferroptosis can be used to predict, diagnose and target treatment ovary disease. Meanwhile, we also evaluated the different phenomena of Ferroptosis in ovarian diseases. It aims to provide new directions for the research and prevention of female reproductive diseases.
Collapse
Affiliation(s)
- Ying Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Bin Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|