1
|
Kodama T, Yokoyama A, Nishioka Y, Kawasaki R, Teshima A, Maeda A, Hojo A, Suizu T, Torii H, Fujioka K, Kishida S, Fujimura T, Arakawa K, Ikeda A, Kawamoto S. Fermented plant product (FPP) suppresses immediate hypersensitivity reactions with impaired high-affinity IgE receptor (FcεRI) signaling. Cytotechnology 2025; 77:69. [PMID: 40012927 PMCID: PMC11861467 DOI: 10.1007/s10616-025-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Fermented plant product (FPP) is a dietary supplement made by fermentation and aging of a variety of plants, including fruits, vegetables, and grains. A previous study has shown that oral FPP supplementation prevents the development of allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis without affecting systemic immune response. However, the mode of action by which FPP exerts an anti-allergic effect remains to be elucidated. Here, we show that FPP acts on mast cells to suppress immediate hypersensitivity reactions in vitro as well as in vivo. We found that stimulation with FPP potently suppressed IgE antibody-mediated degranulation of RBL-2H3 rat basophilic leukemia cells. We also found that oral feeding with FPP significantly suppressed passive cutaneous anaphylaxis (PCA), an in vivo model of IgE- and mast cell-mediated hypersensitivity reactions. Mechanistic analysis revealed that FPP extensively suppressed the high-affinity IgE receptor (FcεRI) signaling pathway, in which FPP not only inhibited intracellular Ca2+ influx upon FcεRI ligation but also negatively regulated another Ca2+-independent FcεRI signaling pathway leading to granule translocation through microtubule formation. These results suggest that FPP fulfills its anti-allergic activity by acting on the IgE-mast cell axis to suppress immediate hypersensitivity reactions.
Collapse
Affiliation(s)
- Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayana Yokoyama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuki Nishioka
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aiko Teshima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Akira Maeda
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayano Hojo
- Manda Fermentation Co. Ltd, Onomichi, Japan
| | | | | | | | | | - Takashi Fujimura
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
2
|
Zawawi NA, Ahmad H, Madatheri R, Fadilah NIM, Maarof M, Fauzi MB. Flavonoids as Natural Anti-Inflammatory Agents in the Atopic Dermatitis Treatment. Pharmaceutics 2025; 17:261. [PMID: 40006628 PMCID: PMC11859288 DOI: 10.3390/pharmaceutics17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Eczema is a complex autoimmune condition characterised mainly by inflammation and skin lesions along with physical and psychological comorbidities. Although there have been significant advances in understanding the mechanisms behind atopic dermatitis, conventionally available treatments yield inconsistent results and have some unintended consequences. In today's digital age, where knowledge is just a click away, natural-based supplements have been on the rise for a more "natural" treatment towards any type of disease. Natural compounds, particularly derived from medicinal plants, have piqued significant interest in the development of herbal remedies for chronic inflammatory skin conditions. Among many compounds, flavonoids have shown promise in treating eczema due to their strong anti-inflammatory, antioxidant, and anti-allergic properties, making them helpful in preventing allergic reactions, inflammation, and skin irritation. This review highlights the therapeutic potential of flavonoid-based bioactive compounds to manage eczema, emphasising the mechanisms of action. Additionally, providing a comprehensive analysis of the potential of emerging and established compounds, while bridging a gap between traditional and modern medicine. Flavonoids offer a variety of opportunities for further research and innovative formulations that can maximise its full benefits. Further combination of flavonoids with various approaches such as nanoencapsulation for enhanced bioavailability, hydrogel-based delivery systems for a controlled release, and additive manufacturing for personalised topical formulations, could align with future precision medicine needs.
Collapse
Affiliation(s)
- Nurul Ain Zawawi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rajesh Madatheri
- Zitai Regeneration Cell Sdn Bhd, George Town 10200, Pulau Pinang, Malaysia;
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Pharmaceuticals and Pharmacy Practice UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Dawson SL, Todd E, Ward AC. The Interplay of Nutrition, the Gut Microbiota and Immunity and Its Contribution to Human Disease. Biomedicines 2025; 13:329. [PMID: 40002741 PMCID: PMC11853302 DOI: 10.3390/biomedicines13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Nutrition, the gut microbiota and immunity are all important factors in the maintenance of health. However, there is a growing realization of the complex interplay between these elements coalescing in a nutrition-gut microbiota-immunity axis. This regulatory axis is critical for health with disruption being implicated in a broad range of diseases, including autoimmune disorders, allergies and mental health disorders. This new perspective continues to underpin a growing number of innovative therapeutic strategies targeting different elements of this axis to treat relevant diseases. This review describes the inter-relationships between nutrition, the gut microbiota and immunity. It then details several human diseases where disruption of the nutrition-gut microbiota-immunity axis has been identified and presents examples of how the various elements may be targeted therapeutically as alternate treatment strategies for these diseases.
Collapse
Affiliation(s)
- Samantha L. Dawson
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Emma Todd
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
4
|
Hu W, Meng X, Wu Y, Li X, Chen H. Terpenoids, a Rising Star in Bioactive Constituents for Alleviating Food Allergy: A Review about the Potential Mechanism, Preparation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26599-26616. [PMID: 39570772 DOI: 10.1021/acs.jafc.4c09124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Food allergies affect approximately 2.5% of the global population, with a notable increase in prevalence observed each year. Terpenoids, a class of natural bioactive constituents, have been widely utilized in the management of immune- and inflammation-related disorders, and their potential in alleviating food allergies is increasingly being recognized. This article summarizes various terpenoids derived from plant, fungal, and marine sources. Among them, triterpenoids, such as oleanolic acid, ursolic acid, and lupeol, possess the highest proportion and bioactivity in alleviating food allergy. Additionally, the mechanisms by which terpenoids may mitigate allergic diseases were categorically outlined, focusing on their roles in epithelial mucosal barrier function, immunomodulatory effects during the sensitization phase, inhibition of effector cells, oxidative stress, and regulation of microbial homeostasis. Finally, the advantages and limitations of natural extraction and artificial synthesis methods were compared, and the application of terpenoids in the food industry were also discussed. This article serves as a useful reference for the development of methods or functional foods based on terpenoids, which could represent a promising avenue for alleviating food allergy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
5
|
Farhan M, Faisal M. The Potential Role of Polyphenol Supplementation in Preventing and Managing Depression: A Review of Current Research. Life (Basel) 2024; 14:1342. [PMID: 39459643 PMCID: PMC11509552 DOI: 10.3390/life14101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Depression is a common mental illness that affects 5% of the adult population globally. The most common symptoms of depression are low mood, lack of pleasure from different activities, poor concentration, and reduced energy levels for an extended period, and it affects the emotions, behaviors, and overall well-being of an individual. The complex pathophysiology of depression presents challenges for current therapeutic options involving a biopsychosocial treatment plan. These treatments may have a delayed onset, low remission and response rates, and undesirable side effects. Researchers in nutrition and food science are increasingly addressing depression, which is a significant public health concern due to the association of depression with the increased incidence of cardiovascular diseases and premature mortality. Polyphenols present in our diet may significantly impact the prevention and treatment of depression. The primary mechanisms include reducing inflammation and oxidative stress, regulating monoamine neurotransmitter levels, and modulating the microbiota-gut-brain axis and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This review summarizes recent advances in understanding the effects of dietary polyphenols on depression and explores the underlying mechanisms of these effects for the benefit of human health. It also highlights studies that are looking at clinical trials to help future researchers incorporate these substances into functional diets, nutritional supplements, or adjunctive therapy to prevent and treat depression.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mohd Faisal
- St. Michael’s Unit, Department of Psychiatry, Mercy University Hospital, Grenville Place, T12WE28 Cork, Ireland
- Tosnú Mental Health Centre, West Village, Ballincollig, P31N400 Cork, Ireland
| |
Collapse
|
6
|
Sun B, Cai F, Yu L, An R, Wei B, Li M. Quercetin inhibits ferroptosis through the SIRT1/Nrf2/HO-1 signaling pathway and alleviates asthma disease. Transl Pediatr 2024; 13:1747-1759. [PMID: 39524399 PMCID: PMC11543135 DOI: 10.21037/tp-24-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Quercetin (QCT) is a bioflavonoid derived from vegetables and fruits that has anti-inflammatory and anti-ferroptosis effects against various diseases. Previous studies have shown that QCT modulates the production of cellular inflammatory factors in asthma models and delays the development of chronic airway inflammation. However, the regulatory mechanism of QCT, a traditional Chinese medicine, in the treatment of asthma has not been elucidated. The aim of the present study is to investigate whether QCT can inhibit ferroptosis via the SIRT1/Nrf2 pathway and play a therapeutic role in asthma. Methods An ovalbumin-induced mouse asthma model was established, and its function was verified by hematoxylin eosin staining, enzyme linked immunosorbent assay, ferric ion assay, malondialdehyde and superoxide dismutase assays, dihydroethidium staining, immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction. Results Our results indicated that an ovalbumin-induced asthma mouse model had been successfully established and that QCT inhibited inflammation, reduced serum levels of inflammatory factors IL-4, IL-5 and IL-13, increased superoxide dismutase levels in lung tissue homogenates, and reduced malondialdehyde and ferric ion production in asthmatic mice. In addition, we found that QCT was able to reverse the expression of SIRT1, Nrf2 and HO-1 in an in vivo asthma mouse model. Conclusions The data from this study indicate that QCT can alleviate asthma, and its mechanism is related to the regulation of ferroptosis, oxidative stress, and the expression of SIRT1 protein.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
- Post-graduate College, China Medical University, Shenyang, China
| | - Fei Cai
- Post-graduate College, China Medical University, Shenyang, China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ran An
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Bing Wei
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Bival Štefan M. Astragalus membranaceus, Nigella sativa, and Perilla frutescens as Immunomodulators-Molecular Mechanisms and Clinical Effectiveness in Allergic Diseases. Curr Issues Mol Biol 2024; 46:9016-9032. [PMID: 39194750 DOI: 10.3390/cimb46080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Plants are the source of numerous remedies in modern medicine, and some of them have been studied due to their potential immunomodulatory activity. Astragalus membranaceus Fisch. ex Bunge (A. membranaceus), Nigella sativa L. (N. sativa), and Perilla frutescens (L.) Britton (P. frutescens) are plant species used in traditional medicine for the treatment of various diseases. Their potential to act as immunomodulatory, anti-inflammatory, and anti-allergic agents makes them interesting for investigating their clinical potential in alleviating the symptoms of allergic diseases. Allergy affects a large number of people; according to some sources more than 30% of the world population suffer from some type of allergic reaction, with pollen allergy as the most common type. Treatment is usually pharmacological and may not be completely effective or have side effects. Thus, we are seeking traditional medicine, mostly medicinal plants, with promising potential for alleviating allergy symptoms. A literature overview was conducted employing databases such as Scopus, PubMed, Web of Science, Springer, and Google Scholar. This manuscript summarizes recent in vivo preclinical and clinical studies on three species with immunomodulatory activity, provides a comparison of their anti-allergic effects, and underlines the potential of their application in clinical practice. The obtained results confirmed their efficacy in the in vivo and clinical studies, but also emphasize the problem of phytochemical characterization of the species and difference between tested doses. More clinical trials with standardized protocols (defined active molecules, dosage, side effects) are required to obtain safe and effective herbal drugs.
Collapse
Affiliation(s)
- Maja Bival Štefan
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
9
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
10
|
Laky M, Arslan M, Zhu X, Rausch-Fan X, Moritz A, Sculean A, Laky B, Ramseier CA, Stähli A, Eick S. Quercetin in the Prevention of Induced Periodontal Disease in Animal Models: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:735. [PMID: 38474862 DOI: 10.3390/nu16050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Periodontitis is an inflammatory condition initiated by oral bacteria and is associated with several systemic diseases. Quercetin is an anti-inflammatory and anti-bacterial poly-phenol present in various foods. The aim of this meta-analysis was the evaluation of the effects of quercetin administration in animal models of experimental periodontitis. METHODS A systematic search was performed in electronic databases using the following search terms: "periodontitis" or "periodontal disease" or "gingivitis" and "quercetin" or "cyanidanol" or "sophoretin" or "pentahydroxyflavone". In vivo preclinical animal models of experimental periodontal disease with a measurement of alveolar bone loss were included in the analysis. The risk of bias of the included studies was assessed using the SYRCLE tool. RESULTS The systematic search yielded 335 results. Five studies were included, four of them qualified for a meta-analysis. The meta-analysis showed that quercetin administration decreased alveolar bone loss (τ2 = 0.31, 1.88 mm 95%CI: 1.09, 2.67) in experimental periodontal disease animal models. However, the risk of bias assessment indicated that four SYRCLE domains had a high risk of bias. CONCLUSIONS Quercetin diminishes periodontal bone loss and prevents disease progression in animal models of experimental periodontal disease. Quercetin might facilitate periodontal tissue hemostasis by reducing senescent cells, decreasing oxidative stress via SIRT1-induced autophagy, limiting inflammation, and fostering an oral bacterial microenvironment of symbiotic microbiota associated with oral health. Future research will show whether and how the promising preclinical results can be translated into the clinical treatment of periodontal disease.
Collapse
Affiliation(s)
- Markus Laky
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Muazzez Arslan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Brenda Laky
- Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Research Group for Regenerative and Orthopedic Medicine (AURROM), 1050 Vienna, Austria
- Austrian Society of Regenerative Medicine, 1010 Vienna, Austria
| | - Christoph A Ramseier
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
11
|
Farhan M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024; 29:865. [PMID: 38398617 PMCID: PMC10893284 DOI: 10.3390/molecules29040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|