1
|
Mehra S, Garrido VT, Dosch AR, Lamichhane P, Srinivasan S, Singh SP, Zhou Z, De Castro Silva I, Joshi C, Ban Y, Datta J, Gilboa E, Merchant NB, Nagathihalli NS. Remodeling of Stromal Immune Microenvironment by Urolithin A Improves Survival with Immune Checkpoint Blockade in Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1224-1236. [PMID: 37448553 PMCID: PMC10337606 DOI: 10.1158/2767-9764.crc-22-0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Siddharth Mehra
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Vanessa T. Garrido
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Austin R. Dosch
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Supriya Srinivasan
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Samara P. Singh
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Yuguang Ban
- Department of Biostatistics and Bioinformatics, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jashodeep Datta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami, Miami, Florida
| | - Nipun B. Merchant
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S. Nagathihalli
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
2
|
Ding Y, Yang P, Li S, Zhang H, Ding X, Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. PHARMACEUTICAL BIOLOGY 2022; 60:2328-2337. [PMID: 36469602 PMCID: PMC9728132 DOI: 10.1080/13880209.2022.2149821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT The reduction in M2 macrophage polarisation plays a major role during diabetic wound healing. Resveratrol (RSV) can promote the polarisation of M2 macrophages and accelerate diabetic wound healing. However, the specific mechanism by which RSV regulates M2 macrophage polarisation to promote diabetic wound healing is unclear. OBJECTIVE This study evaluated the effectiveness of RSV on diabetic wound healing and analysed the underlying mechanisms. MATERIALS AND METHODS STZ-induced C57/B6 mice were used as a diabetic mice model for a period of 15 days. RSV (10 μmol/L) was injected around the wound to evaluate the effect of RSV on the healing process of diabetic wounds. The human monocyte line THP-1 was used to evaluate the effects of RSV (10 μmol/L) on polarisation of M2 macrophages and the secretion of pro-inflammatory factors. RESULTS In vivo, RSV significantly increased diabetic wound healing (p < 0.05) and make the regenerated skin structure more complete. And it promoted the expression of α-SMA and Collagen I (p < 0.05). Moreover, RSV reduced the secretion of inflammatory factors (TNF-α, iNOS and IL-1β) (p < 0.05) and promoted M2 macrophage polarisation by increasing Arg-1 and CD206 expression (p < 0.01). In vitro, RSV promoted the polarisation of M2 macrophages (p < 0.001) and reduced the secretion of pro-inflammatory factors (TNF-α, IL-6 and IL-1β) (p < 0.05). The therapeutic effects of RSV were all significantly reversed with LY294002 (p < 0.01). DISCUSSION AND CONCLUSIONS RSV has the positive effects on promoting the acceleration and quality of skin wound healing, which provides a scientific basis for clinical treatment in diabetic wound.
Collapse
Affiliation(s)
- Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Emergency Surgery, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People’s Hospital), Zhenjiang, China
| | - Ping Yang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Burns and Plastic Surgery, Anqing Shihua Hospital of Nanjing Drum Tower Hospital Group, Anqing, China
- CONTACT Qian Tan Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Vilella R, Izzo S, Naponelli V, Savi M, Bocchi L, Dallabona C, Gerra MC, Stilli D, Bettuzzi S. In Vivo Treatment with a Standardized Green Tea Extract Restores Cardiomyocyte Contractility in Diabetic Rats by Improving Mitochondrial Function through SIRT1 Activation. Pharmaceuticals (Basel) 2022; 15:1337. [PMID: 36355510 PMCID: PMC9692907 DOI: 10.3390/ph15111337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Background. Green tea catechins are known to promote mitochondrial function, and to modulate gene expression and signalling pathways that are altered in the diabetic heart. We thus evaluated the effectiveness of the in vivo administration of a standardized green tea extract (GTE) in restoring cardiac performance, in a rat model of early streptozotocin-induced diabetes, with a focus on the underlying mechanisms. Methods. Twenty-five male adult Wistar rats were studied: the control (n = 9), untreated diabetic animals (n = 7) and diabetic rats subjected to daily GTE administration for 28 days (n = 9). Isolated ventricular cardiomyocytes were used for ex vivo measurements of cell mechanics and calcium transients, and molecular assays, including the analysis of functional protein and specific miRNA expression. Results. GTE treatment induced an almost complete recovery of cardiomyocyte contractility that was markedly impaired in the diabetic cells, by preserving mitochondrial function and energy availability, and modulating the expression of the sarcoplasmic reticulum calcium ATPase and phospholamban. Increased Sirtuin 1 (SIRT1) expression and activity substantially contributed to the observed cardioprotective effects. Conclusions. The data supported the hypothesis that green tea dietary polyphenols, by targeting SIRT1, can constitute an adjuvant strategy for counteracting the initial damage of the diabetic heart, before the occurrence of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Simona Izzo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Adamas Biotech, 73024 Maglie, Italy
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
4
|
Mehra S, Srinivasan S, Singh S, Zhou Z, Garrido V, Silva IDC, Totiger TM, Dosch AR, Dai X, Dawra RK, Jala VR, Shi C, Datta J, VanSaun M, Merchant N, Nagathihalli N. Urolithin A attenuates severity of chronic pancreatitis associated with continued alcohol intake by inhibiting PI3K/AKT/mTOR signaling. Am J Physiol Gastrointest Liver Physiol 2022; 323:G375-G386. [PMID: 36098401 PMCID: PMC9602784 DOI: 10.1152/ajpgi.00159.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Abstract
Heavy alcohol consumption is the dominant risk factor for chronic pancreatitis (CP); however, treatment and prevention strategies for alcoholic chronic pancreatitis (ACP) remains limited. The present study demonstrates that ACP induction in C57BL/6 mice causes significant acinar cell injury, pancreatic stellate cell (PSC) activation, exocrine function insufficiency, and an increased fibroinflammatory response when compared with alcohol or CP alone. Although the withdrawal of alcohol during ACP recovery led to reversion of pancreatic damage, continued alcohol consumption with established ACP perpetuated pancreatic injury. In addition, phosphokinase array and Western blot analysis of ACP-induced mice pancreata revealed activation of the phosphatidylinositol 3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and cyclic AMP response element binding protein (CREB) signaling pathways possibly orchestrating the fibroinflammatory program of ACP pathogenesis. Mice treated with urolithin A (Uro A, a gut-derived microbial metabolite) in the setting of ACP with continued alcohol intake (during the recovery period) showed suppression of AKT and P70S6K activation, and acinar damage was significantly reduced with a parallel reduction in pancreas-infiltrating macrophages and proinflammatory cytokine accumulation. These results collectively provide mechanistic insight into the impact of Uro A on attenuation of ACP severity through suppression of PI3K/AKT/mTOR signaling pathways and can be a useful therapeutic approach in patients with ACP with continuous alcohol intake.NEW & NOTEWORTHY Our novel findings presented here demonstrate the utility of Uro A as an effective therapeutic agent in attenuating alcoholic chronic pancreatitis (ACP) severity with alcohol continuation after established disease, through suppression of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Siddharth Mehra
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Supriya Srinivasan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Samara Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Vanessa Garrido
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Tulasigeri M Totiger
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin R Dosch
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Xizi Dai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Rajinder K Dawra
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Chanjuan Shi
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Jashodeep Datta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Michael VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Nipun Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
5
|
Garmpi A, Damaskos C, Garmpis N, Kaminiotis VV, Georgakopoulou VE, Spandidos DA, Papalexis P, Diamantis E, Patsouras A, Kyriakos G, Tarantinos K, Syllaios A, Marinos G, Kouraklis G, Dimitroulis D. Role of histone deacetylase inhibitors in diabetic cardiomyopathy in experimental models (Review). MEDICINE INTERNATIONAL 2022; 2:26. [PMID: 36699507 PMCID: PMC9829213 DOI: 10.3892/mi.2022.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023]
Abstract
In diabetes, metabolic dysregulation, caused by hyperglycemia, leads to both structural and functional changes in cardiomyocytes and subsequently leads to the development of cardiomyopathy. Histone deacetylases (HDAC) are enzymes that regulate gene transcription. Their actions have been examined in the development of multiple disorders, such as cardiovascular diseases and diabetes. The use of HDAC inhibitors (HDACIs), as potential therapeutic agents against disease progression has yielded promising results. The present review article reports preclinical trials identified in which HDACIs were administered to mice suffering from diabetic cardiomyopathy (DCM), and discusses the role and mechanisms of action of HDAC and HDACIs in DCM. A review of the literature was performed using the PubMed database, aiming to identify publications in the English language concerning the role of HDACIs in DCM. More specifically, key words, separately and in various combinations, such as HDACIs, HDAC, diabetes, cardiomyopathy, heart failure and ischemia/reperfusion injury, were used. Furthermore, the references from all the articles were cross-checked in order to include any other eligible studies. The full-text articles assessed for eligibility were eight, covering the period from 2015 to 2019; finally, all of them were included. The use of HDACIs exhibited encouraging results against DCM progression through various mechanisms, including the reduction of reactive oxygen species generation, inflammatory cytokine production and fibrosis, and an increase in autophagy and angiogenesis.
Collapse
Affiliation(s)
- Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vaios-Vasileios Kaminiotis
- Cardiothoracic Department, Derriford Hospital, University Hospitals Plymouth, PL6 8DH Plymouth, United Kingdom
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece,Correspondence to: Dr Vasiliki Epameinondas Georgakopoulou, Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece,Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Evangelos Diamantis
- Endocrinology Unit, Academic Department of Internal Medicine, Agioi Anargyroi General Oncology Hospital, National and Kapodistrian University of Athens, 14564 Athens, Greece
| | | | - George Kyriakos
- Department of Endocrinology and Nutrition, General Hospital Santa Lucia, 30202 Cartagena, Spain
| | | | | | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, 11527 Athens, Greece
| | - Gregory Kouraklis
- Department of Surgery, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacol Res 2021; 168:105581. [PMID: 33781873 PMCID: PMC7997688 DOI: 10.1016/j.phrs.2021.105581] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; UOSVD Anesthesia and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Raffaele Coppini
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Andrea Gerbino
- Department of Bioscience, Biotechnology and Biopharmaceuticals, University of Bari, Bari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabio Mangiacapra
- Unit of Cardiovascular Science, Campus Bio-Medico University, Rome, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Teresa Pasqua
- Department of Health Science, University of Magna Graecia, Catanzaro, Italy
| | - Claudia Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - Michele Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - Laura Sartiani
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Gabriele Tocchetti
- Interdepartmental Center of Clinical and Translational Research, Federico II University, Naples, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
7
|
Sattayaprasert P, Vasireddi SK, Bektik E, Jeon O, Hajjiri M, Mackall JA, Moravec CS, Alsberg E, Fu J, Laurita KR. Human Cardiac Mesenchymal Stem Cells Remodel in Disease and Can Regulate Arrhythmia Substrates. Circ Arrhythm Electrophysiol 2020; 13:e008740. [PMID: 32755466 PMCID: PMC7578059 DOI: 10.1161/circep.120.008740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1β (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1β or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.
Collapse
Affiliation(s)
- Prasongchai Sattayaprasert
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Sunil K Vasireddi
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Emre Bektik
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (E.B.)
| | - Oju Jeon
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago
| | - Mohammad Hajjiri
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Judith A Mackall
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center (J.A.M.)
| | - Christine S Moravec
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland (C.S.M.)
| | - Eben Alsberg
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago.,Orthopaedics (E.A.), University of Illinois at Chicago.,Pharmacology (E.A.), University of Illinois at Chicago.,Mechanical & Industrial Engineering (E.A.), University of Illinois at Chicago
| | - Jidong Fu
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus (J.F.)
| | - Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| |
Collapse
|
8
|
Filardi T, Ghinassi B, Di Baldassarre A, Tanzilli G, Morano S, Lenzi A, Basili S, Crescioli C. Cardiomyopathy Associated with Diabetes: The Central Role of the Cardiomyocyte. Int J Mol Sci 2019; 20:ijms20133299. [PMID: 31284374 PMCID: PMC6651183 DOI: 10.3390/ijms20133299] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity. DCM, accounting for 50%–80% of deaths in diabetic patients, represents a worldwide problem for human health and related economics. Optimal glycemic control is not sufficient to prevent DCM, which derives from heart remodeling and geometrical changes, with both consequences of critical events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation, behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as “passive” targets but as “active” units participating in the inflammatory dialogue between local and systemic counterparts underlying DCM development and maintenance. Some of the main biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are overviewed; particular attention is addressed to early inflammatory cytokines and chemokines, representing potential therapeutic targets for a prompt early intervention when no signs or symptoms of DCM are manifesting yet. DCM clinical management still represents a challenge and further translational investigations, including studies at female/male cell level, are warranted.
Collapse
Affiliation(s)
- Tiziana Filardi
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gaetano Tanzilli
- Department of Cardiovascular Sciences, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Piazza L. de Bosis 6, 00135 Rome, Italy.
| |
Collapse
|
9
|
The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Restores Cardiomyocyte Contractility in a Rat Model of Early Diabetes. Int J Mol Sci 2019; 20:ijms20081873. [PMID: 31014028 PMCID: PMC6514644 DOI: 10.3390/ijms20081873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 01/08/2023] Open
Abstract
In early diabetes, hyperglycemia and the associated metabolic dysregulation promote early changes in the functional properties of cardiomyocytes, progressively leading to the appearance of the diabetic cardiomyopathy phenotype. Recently, the interplay between histone acetyltransferases (HAT) and histone deacetylases (HDAC) has emerged as a crucial factor in the development of cardiac disorders. The present study evaluates whether HDAC inhibition can prevent the development of cardiomyocyte contractile dysfunction induced by a short period of hyperglycemia, with focus on the potential underlying mechanisms. Cell contractility and calcium dynamics were measured in unloaded ventricular myocytes isolated from the heart of control and diabetic rats. Cardiomyocytes were either untreated or exposed to the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) for 90 min. Then, a fraction of each group of cells was used to evaluate the expression levels of proteins involved in the excitation-contraction coupling, and the cardiomyocyte metabolic activity, ATP content, and reactive oxygen species levels. SAHA treatment was able to counteract the initial functional derangement in cardiomyocytes by reducing cell oxidative damage. These findings suggest that early HDAC inhibition could be a promising adjuvant approach for preventing diabetes-induced cardiomyocyte oxidative damage, which triggers the pro-inflammatory signal cascade, mitochondrial damage, and ventricular dysfunction.
Collapse
|
10
|
Kita-Tomihara T, Sato S, Yamasaki S, Ueno Y, Kimura G, Ketema RM, Kawahara T, Kurasaki M, Saito T. Polyphenol-enriched azuki bean ( Vina angularis) extract reduces the oxidative stress and prevents DNA oxidation in the hearts of streptozotocin-induced early diabetic rats. Int J Food Sci Nutr 2019; 70:845-855. [PMID: 30775937 DOI: 10.1080/09637486.2019.1576598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We examined the changes in the heart of rats at the early stages of streptozotocin (STZ)-induced diabetes, and whether azuki bean extract (ABE) could influence these changes. The experimental diabetic rats received 0 or 40 mg/kg of ABE orally for 4 weeks, whereas the control group rats received distilled water. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and expression of proteins associated with peroxisomal FA β-oxidation as well as oxidative stress markers were examined. The levels of peroxisomal ACOX1 and catalase of the diabetic groups were significantly higher than those in the control group. The levels of p62, phosphorylated-p62 (p-p62) and HO-1 in the STZ group were significantly higher than those in the control group, and the levels of p-p62, HO-1, and 8-OHdG were significantly lower by ABE administration. The STZ-induced early diabetes increases the levels of proteins related to peroxisomal FA β-oxidation and oxidative stress markers in hearts. ABE protects diabetic hearts from oxidative damage.
Collapse
Affiliation(s)
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare , Aomori , Japan
| | - Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Goh Kimura
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Rahel M Ketema
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Tae Kawahara
- Graduate School of Medicine, Osaka University , Osaka , Japan
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University , Sapporo , Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University , Sapporo , Japan
| |
Collapse
|
11
|
Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1346958. [PMID: 29854071 PMCID: PMC5944235 DOI: 10.1155/2018/1346958] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/28/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
Activation of pancreatic stellate cells (PSCs) initiates pancreatic fibrosis in chronic pancreatitis and furnishes a niche that enhances the malignancy of pancreatic cancer cells (PCCs) in pancreatic ductal adenocarcinoma (PDAC). Resveratrol (RSV), a natural polyphenol, exhibits potent antioxidant and anticancer effects. However, whether and how RSV influences the biological properties of activated PSCs and the effects of these changes on tumor remain unknown. In the present study, we found that RSV impeded hydrogen peroxide-driven reactive oxygen species- (ROS-) induced activation, invasion, migration, and glycolysis of PSCs. In addition, miR-21 expression in activated PSCs was downregulated after RSV treatment, whereas the PTEN protein level increased. miR-21 silencing attenuated ROS-induced activation, invasion, migration, and glycolysis of PSCs, whereas the overexpression of miR-21 rescued the responses of PSCs treated with RSV. Moreover, RSV or N-acetyl-L-cysteine (NAC) administration or miR-21 knockdown in PSCs reduced the invasion and migration of PCCs in coculture, and the effects of RSV were partly reversed by miR-21 upregulation. Collectively, RSV inhibits PCC invasion and migration through suppression of ROS/miR-21-mediated activation and glycolysis in PSCs. Therefore, targeting miR-21-mediated glycolysis by RSV in tumor stroma may serve as a new strategy for clinical PDAC prevention or treatment.
Collapse
|
12
|
Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9482018. [PMID: 29765509 PMCID: PMC5885341 DOI: 10.1155/2018/9482018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023]
Abstract
NAF-1 (nutrient-deprivation autophagy factor-1), which is an outer mitochondrial membrane protein, is known to play important roles in calcium metabolism, antiapoptosis, and antiautophagy. Resveratrol, a natural polyphenolic compound, is considered as a potent anticancer agent. Nevertheless, the molecular mechanisms underlying the effects of resveratrol and NAF-1 and their mediation of drug resistance in pancreatic cancer remain unclear. Here, we demonstrate that resveratrol suppresses the expression of NAF-1 in pancreatic cancer cells by inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling. In addition, the knockdown of NAF-1 activates apoptosis and impedes the proliferation of pancreatic cancer cells. More importantly, the targeting of NAF-1 by resveratrol can improve the sensitivity of pancreatic cancer cells to gemcitabine. These results highlight the significance of strategies that target NAF-1, which may enhance the efficacy of gemcitabine in pancreatic cancer therapy.
Collapse
|
13
|
Savi M, Bocchi L, Bresciani L, Falco A, Quaini F, Mena P, Brighenti F, Crozier A, Stilli D, Del Rio D. Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide. Molecules 2018; 23:molecules23030549. [PMID: 29494535 PMCID: PMC6017162 DOI: 10.3390/molecules23030549] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
One of the most recently proposed candidates as a potential trigger for cardiovascular diseases is trimethylamine-N-oxide (TMAO). Possible direct effects of TMAO on myocardial tissue, independent of vascular damage, have been only partially explored so far. In the present study, we assessed the detrimental direct effects of TMAO on cardiomyocyte contractility and intracellular calcium dynamics, and the ability of urolithin B-glucuronide (Uro B-gluc) in counteracting TMAO-induced cell damage. Cell mechanics and calcium transients were measured, and ultrastructural analysis was performed in ventricular cardiomyocytes isolated from the heart of normal adult rats. Cells were either untreated, exposed to TMAO, or to TMAO and Uro B-gluc. TMAO exposure worsened cardiomyocyte mechanics and intracellular calcium handling, as documented by the decrease in the fraction of shortening (FS) and the maximal rate of shortening and re-lengthening, associated with reduced efficiency in the intracellular calcium removal. Ultrastructurally, TMAO-treated cardiomyocytes also exhibited glycogen accumulation, a higher number of mitochondria and lipofuscin-like pigment deposition, suggesting an altered cellular energetic metabolism and a higher rate of protein oxidative damage, respectively. Uro B-gluc led to a complete recovery of cellular contractility and calcium dynamics, and morphologically to a reduced glycogen accumulation. We demonstrated for the first time a direct negative role of TMAO on cardiomyocyte functional properties and the ability of Uro B-gluc in counteracting these detrimental effects.
Collapse
Affiliation(s)
- Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.S.); (L.Bo.)
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.S.); (L.Bo.)
| | - Letizia Bresciani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy;
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Via A. Gramsci 14, 43126 Parma, Italy; (A.F.); (F.Q.)
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Via A. Gramsci 14, 43126 Parma, Italy; (A.F.); (F.Q.)
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (P.M.); (F.B.)
| | - Furio Brighenti
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (P.M.); (F.B.)
| | - Alan Crozier
- Department of Nutrition, University of California, 3143 Meyer Hall One Shields Avenue, Davis, CA 95616-5270, USA;
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.S.); (L.Bo.)
- Correspondence: (D.S.); (D.D.R.); Tel: +39-0521-906-117 (D.S.); +39-0521-033-830 (D.D.R.)
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy;
- Correspondence: (D.S.); (D.D.R.); Tel: +39-0521-906-117 (D.S.); +39-0521-033-830 (D.D.R.)
| |
Collapse
|
14
|
Savi M, Bocchi L, Mena P, Dall'Asta M, Crozier A, Brighenti F, Stilli D, Del Rio D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2017; 16:80. [PMID: 28683791 PMCID: PMC5501434 DOI: 10.1186/s12933-017-0561-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background Emerging evidence suggests that specific (poly)phenols may constitute new preventative strategies to counteract cell oxidative stress and myocardial tissue inflammation, which have a key role in the patho-physiology of diabetic cardiomyopathy. In a rat model of early diabetes, we evaluated whether in vivo administration of urolithin A (UA) or urolithin B (UB), the main gut microbiota phenolic metabolites of ellagitannin-rich foods, can reduce diabetes-induced microenvironmental changes in myocardial tissue, preventing cardiac functional impairment. Methods Adult Wistar rats with streptozotocin-induced type-1 diabetes (n = 29) were studied in comparison with 10 control animals. Diabetic rats were either untreated (n = 9) or subjected to daily i.p. injection of UA (n = 10) or UB (n = 10). After 3 weeks of hyperglycaemia, hemodynamics, cardiomyocyte contractile properties and calcium transients were measured to assess cardiac performance. The myocardial expression of the pro-inflammatory cytokine fractalkine and proteins involved in calcium dynamics (sarcoplasmic reticulum calcium ATPase, phospholamban and phosphorylated phospholamban) were evaluated by immunoblotting. Plasma, urine and tissue distribution of UA, UB and their phase II metabolites were determined. Results In vivo urolithin treatment reduced by approximately 30% the myocardial expression of the pro-inflammatory cytokine fractalkine, preventing the early inflammatory response of cardiac cells to hyperglycaemia. The improvement in myocardial microenvironment had a functional counterpart, as documented by the increase in the maximal rate of ventricular pressure rise compared to diabetic group (+18% and +31% in UA and UB treated rats, respectively), and the parallel reduction in the isovolumic contraction time (−12%). In line with hemodynamic data, both urolithins induced a recovery of cardiomyocyte contractility and calcium dynamics, leading to a higher re-lengthening rate (+21%, on average), lower re-lengthening times (−56%), and a more efficient cytosolic calcium clearing (−32% in tau values). UB treatment also increased the velocity of shortening (+27%). Urolithin metabolites accumulated in the myocardium, with a higher concentration of UB and UB-sulphate, potentially explaining the slightly higher efficacy of UB administration. Conclusions In vivo urolithin administration may be able to prevent the initial inflammatory response of myocardial tissue to hyperglycaemia and the negative impact of the altered diabetic milieu on cardiac performance.
Collapse
Affiliation(s)
- Monia Savi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Margherita Dall'Asta
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Alan Crozier
- Department of Nutrition, University of California, 3143 Meyer Hall One Shields Avenue, Davis, CA, 95616-5270, USA
| | - Furio Brighenti
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|