1
|
Liu C, Yang Y, Wang M, Jiang W, Du Y, Hao Z, Chen L, Zhu K, Liu B, Niu L, Zhao Y, Wang Y, Gan M, Shen L, Zhu L. Effects of L-arginine on gut microbiota and muscle metabolism in fattening pigs based on omics analysis. Front Microbiol 2024; 15:1490064. [PMID: 39588104 PMCID: PMC11586382 DOI: 10.3389/fmicb.2024.1490064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction L-arginine is an α-amino acid and a semi-essential nutrient of significant biological interest. It plays a role in influencing various aspects of animal meat traits, gut microbiota composition, and physiological metabolism. Methods This study aimed to investigate the combined effects of L-arginine supplementation on gut microbiota composition and the metabolism of the longissimus dorsi muscle in fattening pigs. Eighteen Yorkshire commercial pigs were divided into two groups: a control group that received no supplements and a treatment group that was given 1% L-arginine for 52 days. The diversity and composition of microorganisms in the feces of the control (NC) and L-arginine (Arg) groups were analyzed by sequencing the 16S rRNA V3 -V4 region of the bacterial genome. Results The findings indicated that L-arginine supplementation increased both the abundance and diversity of gut microbiota, particularly affecting the Firmicutes and Bacteroidetes phyla. KEGG enrichment analysis revealed significant changes in several metabolism-related pathways, including amino acid, carbohydrate, and lipid metabolism. Metabolomic analysis identified 85 differential metabolites between the arginine and control groups, with phospholipids ranking among the top 20. Additionally, functional predictions indicated an increased abundance in the glycerophospholipid metabolism pathway. Correlation analysis linked changes in gut microbiota to phospholipid levels, which subsequently influenced post-slaughter meat color and drip loss. Discussion These results suggest that L-arginine supplementation positively impacts gut microbiota composition and the metabolic profile of the longissimus dorsi muscle in fattening pigs, with potential implications for meat quality.
Collapse
Affiliation(s)
- Chengming Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiting Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Meng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yong Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ziling Hao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Bin Liu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
3
|
Egilmez CB, Pazarlar BA, Erdogan MA, Uyanikgil Y, Erbas O. Choline chloride shows gender-dependent positive effects on social deficits, learning/memory impairments, neuronal loss and neuroinflammation in the lipopolysaccharide-induced rat model of autism. Int J Dev Neurosci 2024; 84:392-405. [PMID: 38721665 DOI: 10.1002/jdn.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 08/06/2024] Open
Abstract
The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 μg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Burcu Azak Pazarlar
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Yiğit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| |
Collapse
|
4
|
Tayebati SK, Martinelli I, Moruzzi M, Amenta F, Tomassoni D. Correction: Tayebati et al. Choline and Choline alphoscerate Do Not Modulate Inflammatory Processes in the Rat Brain. Nutrients 2017, 9, 1084. Nutrients 2024; 16:2462. [PMID: 39125453 PMCID: PMC11314178 DOI: 10.3390/nu16152462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 08/12/2024] Open
Abstract
For the original publication [...].
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (I.M.); (M.M.); (F.A.)
| | - Ilenia Martinelli
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (I.M.); (M.M.); (F.A.)
| | - Michele Moruzzi
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (I.M.); (M.M.); (F.A.)
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (I.M.); (M.M.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
5
|
Ossoliński K, Ruman T, Copié V, Tripet BP, Kołodziej A, Płaza-Altamer A, Ossolińska A, Ossoliński T, Krupa Z, Nizioł J. Metabolomic profiling of human bladder tissue extracts. Metabolomics 2024; 20:14. [PMID: 38267657 DOI: 10.1007/s11306-023-02076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Bladder cancer is a common malignancy affecting the urinary tract and effective biomarkers and for which monitoring therapeutic interventions have yet to be identified. OBJECTIVES Major aim of this work was to perform metabolomic profiling of human bladder cancer and adjacent normal tissue and to evaluate cancer biomarkers. METHODS This study utilized nuclear magnetic resonance (NMR) and high-resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS) methods to investigate polar metabolite profiles in tissue samples from 99 bladder cancer patients. RESULTS Through NMR spectroscopy, six tissue metabolites were identified and quantified as potential indicators of bladder cancer, while LDI-MS allowed detection of 34 compounds which distinguished cancer tissue samples from adjacent normal tissue. Thirteen characteristic tissue metabolites were also found to differentiate bladder cancer tumor grades and thirteen metabolites were correlated with tumor stages. Receiver-operating characteristics analysis showed high predictive power for all three types of metabolomics data, with area under the curve (AUC) values greater than 0.853. CONCLUSION To date, this is the first study in which bladder human normal tissues adjacent to cancerous tissues are analyzed using both NMR and MS method. These findings suggest that the metabolite markers identified in this study may be useful for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Artur Kołodziej
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Aneta Płaza-Altamer
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences, Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| |
Collapse
|
6
|
Borgonetti V, Galeotti N. Novel Combination of Choline with Withania somnifera (L.) Dunal, and Bacopa monnieri (L.) Wetts Reduced Oxidative Stress in Microglia Cells, Promoting Neuroprotection. Int J Mol Sci 2023; 24:14038. [PMID: 37762339 PMCID: PMC10531461 DOI: 10.3390/ijms241814038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Memory deficit is one of the major negative outcomes of chronic stress. Cholinergic system modulates memory not only through the neuronal cells, but also via interactions with non-neuronal cells, suggesting that microglia can influence synaptic function and plasticity, contributing to cognition and memory function. Withania somnifera (L.) Dunal (WS) and Bacopa monnieri (L.) Wettst (BM), are traditional herbal medicinal products used for the temporary relief of symptoms of stress. The aim of this study was to investigate whether choline (CLN) activity could be enhanced via an association with adaptogens: WS and BM extracts. First, we optimized an in vitro model of corticotropin-releasing hormone (CRH)-induced oxidative stress on microglial BV2 cells. CRH 100 nM reduced BV2 cell viability and induced morphological changes and neurotoxicity after 24 h of microglia stimulation. Moreover, it induced an increase in the production of reactive oxygen species (ROS) and dysregulated antioxidant protein (i.e., SIRT-1 and NRF-2). The association between choline and adaptogens (CBW) 10 μg/mL counteracted the effect of CRH on BV2 cells and reduced the neurotoxicity produced by BV2 CRH-conditioned medium in the SH-SY5Y cell lines. CBW 200 mg/kg produced an ameliorative effect on recognition memory in the novel object recognition test (NORT) test in mice. In conclusion, combining choline with adaptogen plant extracts might represent a promising intervention in chronic stress associated with memory disturbances through the attenuation of microglia-induced oxidative stress.
Collapse
Affiliation(s)
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| |
Collapse
|
7
|
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer's disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep 2023; 14:64-76. [PMID: 36593897 PMCID: PMC9803919 DOI: 10.1016/j.ibneur.2022.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.
Collapse
Affiliation(s)
- Michael Kunle Ajenikoko
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Abayomi Oyeyemi Ajagbe
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Oluwanisola Akanji Onigbinde
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Ahmad Adekilekun Tijani
- Department of Anatomy, Faculty of Basic Medical Sciences, Modibbo Adama University, Yola, Nigeria
| |
Collapse
|
8
|
Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne) 2023; 14:1148166. [PMID: 36950691 PMCID: PMC10025538 DOI: 10.3389/fendo.2023.1148166] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | | | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- ASL Avellino, Montefiore Health System, New York, NY, United States
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | - Angela Lombardi
- Department of Microbiology and Immunology, Montefiore Health System, New York, NY, United States
- *Correspondence: Angela Lombardi,
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- University of Naples “Federico II”, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Montefiore Health System, New York, NY, United States
| |
Collapse
|
9
|
Ossoliński K, Ruman T, Copié V, Tripet BP, Nogueira LB, Nogueira KO, Kołodziej A, Płaza-Altamer A, Ossolińska A, Ossoliński T, Nizioł J. Metabolomic and elemental profiling of blood serum in bladder cancer. J Pharm Anal 2022; 12:889-900. [PMID: 36605581 PMCID: PMC9805945 DOI: 10.1016/j.jpha.2022.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/09/2023] Open
Abstract
Bladder cancer (BC) is one of the most frequently diagnosed types of urinary cancer. Despite advances in treatment methods, no specific biomarkers are currently in use. Targeted and untargeted profiling of metabolites and elements of human blood serum from 100 BC patients and the same number of normal controls (NCs), with external validation, was attempted using three analytical methods, i.e., nuclear magnetic resonance, gold and silver-109 nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS), and inductively coupled plasma optical emission spectrometry (ICP-OES). All results were subjected to multivariate statistical analysis. Four potential serum biomarkers of BC, namely, isobutyrate, pyroglutamate, choline, and acetate, were quantified with proton nuclear magnetic resonance, which had excellent predictive ability as judged by the area under the curve (AUC) value of 0.999. Two elements, Li and Fe, were also found to distinguish between cancer and control samples, as judged from ICP-OES data and AUC of 0.807 (in validation set). Twenty-five putatively identified compounds, mostly related to glycans and lipids, differentiated BC from NCs, as detected using LDI-MS. Five serum metabolites were found to discriminate between tumor grades and nine metabolites between tumor stages. The results from three different analytical platforms demonstrate that the identified distinct serum metabolites and metal elements have potential to be used for noninvasive detection, staging, and grading of BC.
Collapse
Affiliation(s)
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 35-959, Rzeszów, Poland
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian P. Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Leonardo B. Nogueira
- Department of Geology, Federal University of Ouro Preto, 35400-000, Ouro Preto, Brazil
| | - Katiane O.P.C. Nogueira
- Department of Biological Sciences, Federal University of Ouro Preto, 35400-000, Ouro Preto, Brazil
| | - Artur Kołodziej
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 35-959, Rzeszów, Poland
| | - Aneta Płaza-Altamer
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 35-959, Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, 36-100, Kolbuszowa, Poland
| | - Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 35-959, Rzeszów, Poland
| |
Collapse
|
10
|
Pacini A, Tomassoni D, Trallori E, Micheli L, Amenta F, Ghelardini C, Di Cesare Mannelli L, Traini E. Comparative Assessment of the Activity of Racemic and Dextrorotatory Forms of Thioctic (Alpha-Lipoic) Acid in Low Back Pain: Preclinical Results and Clinical Evidences From an Open Randomized Trial. Front Pharmacol 2021; 12:607572. [PMID: 33732153 PMCID: PMC7959756 DOI: 10.3389/fphar.2021.607572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/15/2021] [Indexed: 01/16/2023] Open
Abstract
Peripheral neuropathies, characterized by altered nociceptive and muscular functions, are related to oxidative stress. Thioctic acid is a natural antioxidant existing as two optical isomers, but most clinically used as racemic mixture. The present study investigated the central nervous system’s changes which followed loose-ligation-derived compression of sciatic nerve, the putative neuroprotective role of thioctic acid and the pain-alleviating effect on low-back pain suffering patients. Loose ligation of the right sciatic nerve was performed in spontaneously hypertensive rats (SHR), a model of increased oxidative stress, and in normotensive Wistar-Kyoto rats (WKY). Animals with sciatic nerve ligation were left untreated or were treated intraperitoneally for 15 days with 250 μmol·kg−1·die−1 of (+/−)-thioctic acid; 125 μmol·kg−1·die−1 of (+/−)-thioctic acid; 125 μmol·kg−1·die−1 of (+)-thioctic acid lysine salt; 125 μmol·kg−1·die−1 of (−)-thioctic acid; 300 μmol·kg−1·die−1 pregabalin. Control SHR and WKY rats received the same amounts of vehicle. The clinical trial NESTIORADE (Sensory-Motor Neuropathies of the Sciatic Nerve: Comparative evaluation of the effect of racemic and dextro-rotatory forms of thioctic acid) examined 100 patients (49 males and 51 females aged 53 ± 11 years) dividing them into two equal-numbered groups, each treated daily for 60 days with 600 mg of (+/−)-thioctic acid or (+)-thioctic acid, respectively. The trial was registered prior to patient enrollment at EudraCT website (OSSC Number: 2011-000964-81). In the preclinical study, (+)-thioctic acid was more active than (+/−)- or (−)-enantiomers in relieving pain and protecting peripheral nerve as well as in reducing oxidative stress and astrogliosis in the spinal cord. Main findings of NESTIORADE clinical trial showed a greater influence on painful symptomatology, a quicker recovery and a better impact on quality of life of (+)-thioctic acid vs. (+/−)-thioctic acid. These data may have a pharmacological and pharmacoeconomical relevance and suggest that thioctic acid, above all (+)-enantiomer, could be considered for treatment of low-back pain involving neuropathy.
Collapse
Affiliation(s)
- Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Elena Trallori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Francesco Amenta
- Section of Human Anatomy, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Enea Traini
- Section of Human Anatomy, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
11
|
Skeletal Muscle Metabolomic Responses to Endurance and Resistance Training in Rats under Chronic Unpredictable Mild Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041645. [PMID: 33572176 PMCID: PMC7914905 DOI: 10.3390/ijerph18041645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
The objectives of this study were to compare the antidepressant effects between endurance and resistance exercise for optimizing interventions and examine the metabolomic changes in different types of skeletal muscles in response to the exercise, using a rat model of chronic unpredictable mild stress (CUMS)-induced depression. There were 32 male Sprague-Dawley rats randomly divided into a control group (C) and 3 experimental groups: CUMS control (D), endurance exercise (E), and resistance exercise (R). Group E underwent 30 min treadmill running, and group R performed 8 rounds of ladder climbing, 5 sessions per week for 4 weeks. Body weight, sucrose preference, and open field tests were performed pre and post the intervention period for changes in depressant symptoms, and the gastrocnemius and soleus muscles were sampled after the intervention for metabolomic analysis using the 1H-NMR technique. The results showed that both types of exercise effectively improved the depression-like symptoms, and the endurance exercise appeared to have a better effect. The levels of 10 metabolites from the gastrocnemius and 13 metabolites from the soleus of group D were found to be significantly different from that of group C, and both types of exercise had a callback effect on these metabolites, indicating that a number of metabolic pathways were involved in the depression and responded to the exercise interventions.
Collapse
|
12
|
Putilina MV. [A personalized selection of choline precursors in evidence - based medicine]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:144-151. [PMID: 32678562 DOI: 10.17116/jnevro2020120061144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The analysis of mechanisms of the neuroprotective effect of choline precursors reveals the primary effects of citicoline on the processes of repair of neuronal membranes, a decrease in the degeneration of free fatty acids, and choline alfoscerate, an increase in the production of the neurotransmitter acetylcholine. Although citicoline has a lesser effect on choline secretion than choline alfoscerate, the combination of choline and cytidine in its composition is a universal tool to reduce symptoms of cerebral ischemia, to stabilize cognitive status, superior to the standard benefits of choline. Various mechanisms of the action of citicoline enable to recommend it as a drug effective both in the acute phase of the disease and in the delayed period, giving it the status of a universal nootropic compound.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Obesity and Age-Related Changes in the Brain of the Zucker Lepr fa/fa Rats. Nutrients 2020; 12:E1356. [PMID: 32397542 PMCID: PMC7284640 DOI: 10.3390/nu12051356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome (MetS) is an association between obesity, dyslipidemia, hyperglycemia, hypertension, and insulin resistance. A relationship between MetS and vascular dementia was hypothesized. The purpose of this work is to investigate brain microanatomy alterations in obese Zucker rats (OZRs), as a model of MetS, compared to their counterparts lean Zucker rats (LZRs). 12-, 16-, and 20-weeks-old male OZRs and LZRs were studied. General physiological parameters and blood values were measured. Immunochemical and immunohistochemical techniques were applied to analyze the brain alterations. The morphology of nerve cells and axons, astrocytes and microglia were investigated. The blood-brain barrier (BBB) changes occurring in OZRs were assessed as well using aquaporin-4 (AQP4) and glucose transporter protein-1 (GLUT1) as markers. Body weight gain, hypertension, hyperglycemia, and hyperlipidemia were found in OZRs compared to LZRs. In the frontal cortex and hippocampus, a decrease of neurons was noticeable in the older obese rats in comparison to their age-matched lean counterparts. In OZRs, a reduction of neurofilament immunoreaction and gliosis was observed. The BBB of older OZRs revealed an increased expression of AQP4 likely related to the development of edema. A down-regulation of GLUT1 was found in OZRs of 12 weeks of age, whereas it increased in older OZRs. The behavioral analysis revealed cognitive alterations in 20-week-old OZRs. Based on these results, the OZRs may be useful for understanding the mechanisms through which obesity and related metabolic alterations induce neurodegeneration.
Collapse
Affiliation(s)
- Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany;
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| |
Collapse
|
14
|
Rashvand S, Mobasseri M, Tarighat-Esfanjani A. The Effects of Choline and Magnesium Co-Supplementation on Metabolic Parameters, Inflammation, and Endothelial Dysfunction in Patients With Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Trial. J Am Coll Nutr 2019; 38:714-721. [PMID: 31012803 DOI: 10.1080/07315724.2019.1599745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To our knowledge, no study has investigated the effects of choline and magnesium co-supplementation on metabolic parameters, inflammation, and endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). The aim of this study was investigation of the effects of the choline and magnesium co-supplementation on metabolic parameters, inflammation, and endothelial dysfunction in patients with T2DM.Methods: A randomized double-blind placebo-controlled parallel clinical trial was carried out among 96 diabetic patients. Ninety-six patients were randomly assigned to either choline, magnesium, choline-magnesium, or placebo for 2 months. Anthropometric measurement; metabolic, inflammatory, and endothelial markers; dietary intake; and physical activity were assessed at baseline and after treatment.Results: There was a significant change in serum magnesium in both magnesium and choline-magnesium groups (p < 0.05). Also, significant changes were observed in interleukin (IL)-6 levels in magnesium and choline-magnesium groups (p < 0.05). Moreover, vascular cell adhesion molecule-1 (VCAM-1) levels decreased in choline and choline-magnesium groups (p < 0.05). When adjusted for potential confounders, inflammation and endothelial factors (IL-6 and VCAM-1) decreased significantly in the choline-magnesium group as compared to other groups (p < 0.05). Compared to baseline values there were no significant differences in all anthropometric measurements and metabolic factors among four groups (p > 0.05).Conclusions: Choline and magnesium co-supplementation was more effective in improving inflammation and endothelial dysfunction than supplementation with choline or magnesium alone.
Collapse
Affiliation(s)
- Samaneh Rashvand
- Nutrition Research Center, Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Professor, Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Tayebati SK. Phospholipid and Lipid Derivatives as Potential Neuroprotective Compounds. Molecules 2018; 23:molecules23092257. [PMID: 30189584 PMCID: PMC6225353 DOI: 10.3390/molecules23092257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
The worldwide demographical trend is changing towards a more elderly population. In particular, this phenomenon is increasing the number of neurodegenerative disease cases (e.g., Alzheimer’s disease) in advanced countries. Therefore, there is a fertile field for neuroprotective approaches to address this problem. A useful strategy to protect the membrane integrity of cells and reduce inflammatory processes. In this context, the neurons represent particularly vulnerable cells. Thus, a protection strategy should include their membrane preservation and improved anti-inflammatory processes. The contribution of phospholipid derivatives to this issue is crucial and many articles evidence their role in both health and disease. On the other hand, some lipids containing choline actively participate to increase the choline levels in the nervous system. It is acknowledged that the cholinergic system plays a pivotal role both in the central and in the peripheral nervous system. Neurons cannot synthesize choline, which is provided by the diet. The reuptake of ACh and its hydrolysis represent the principal source of choline. Therefore, to cover choline needs, choline-containing lipids may be used. There are different works which demonstrate their neuroprotective features This review article analyzes phospholipid and lipid derivatives that through different mechanisms are involved in these protective processes, although, sometimes the same molecules may behave as neurotoxic elements, therefore, their protective machinery should be detailed better.
Collapse
|