1
|
Lee PW, Totten M, Traylor A, Zhang SX, Wang TH, Hsieh K. Cross-kingdom pathogen detection via duplex universal PCR and high-resolution melt. Biosens Bioelectron 2025; 270:116922. [PMID: 39579677 PMCID: PMC11625404 DOI: 10.1016/j.bios.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Infectious diseases caused by pathogenic bacteria and fungi continuously pose a significant threat worldwide. The occurrence of polymicrobial infections, including polybacterial, polyfungal or bacteria-fungal co-infections further complicates diagnosis and treatment. Current diagnostic methods, heavily reliant on culture methods, are slow and often inefficient. This inefficiency underscores the urgent need for new diagnostic approaches that can swiftly identify a wide array of pathogens across both the bacterial and fungal kingdoms. In response to this need, our study introduces a duplex universal PCR and high-resolution melt (HRM) method that enables the detection of both bacterial and fungal pathogens within a single PCR-HRM procedure. This method uses two universal primer sets designed to target bacterial and fungal genomic DNA respectively, facilitating broad-range detection of 16 pathogens flagged by the World Health Organization (WHO). Moreover, this assay can be adapted in microfluidic-based digital reaction format and when analyzed via a one-versus-one support vector machine classifier achieved a detection accuracy exceeding 99.9%. This digital duplex PCR-HRM method has the capacity to quantitatively detect co-infections with varying pathogen ratios in simulated samples, demonstrating its versatility and multiplexed capacity. When applied to clinical bronchoalveolar lavage (BAL) samples, digital duplex PCR-HRM successfully identified both monomicrobial and polymicrobial infections. This development marks a significant advancement in the field of infectious disease diagnostics, offering a rapid, accurate, and comprehensive method for identifying a broad spectrum of bacterial and fungal pathogens, thus potentially improving patient management and outcomes.
Collapse
Affiliation(s)
- Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Marissa Totten
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Amelia Traylor
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sean X Zhang
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
2
|
Chigozie VU, Saki M, Esimone CO. Molecular structural arrangement in quorum sensing and bacterial metabolic production. World J Microbiol Biotechnol 2025; 41:71. [PMID: 39939401 DOI: 10.1007/s11274-025-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Quorum sensing (QS) regulates bacterial behaviors such as biofilm formation, virulence, and metabolite production through signaling molecules like acyl-homoserine lactones (AHLs), peptides, and AI-2. These signals are pivotal in bacterial communication, influencing pathogenicity and industrial applications. This review explores the molecular architecture of QS signals and their role in metabolite production, emphasizing structural modifications that disrupt bacterial communication to control virulence and enhance industrial processes. Key findings highlight the development of synthetic QS analogs, engineered inhibitors, and microbial consortia as innovative tools in biotechnology and medicine. The review underscores the potential of molecular engineering in managing microbial behaviors and optimizing applications like biofuel production, bioplastics, and anti-virulence therapies. Additionally, cross-species signaling mechanisms, particularly involving AI-2, reveal new opportunities for regulating interspecies cooperation and competition. This synthesis aims to bridge molecular insights with practical applications, showcasing how QS-based technologies can drive advancements in microbial biotechnology and therapeutic strategies.
Collapse
Affiliation(s)
- Victor U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Ebonyi State, Nigeria.
- International Institute for Pharmaceutical Research (IIPR), Ohaozara, Ebonyi State, Nigeria.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
3
|
Festa RA, Cockerill FR, Pesano RL, Haley E, Luke N, Mathur M, Chen X, Havrilla J, Percaccio M, Magallon J, Erickson S, Ghashghaie M, Rosas A, Baunoch D. Pooled Antibiotic Susceptibility Testing for Polymicrobial UTI Performs Within CLSI Validation Standards. Antibiotics (Basel) 2025; 14:143. [PMID: 40001387 PMCID: PMC11852178 DOI: 10.3390/antibiotics14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Urinary tract infections (UTIs) pose an increasing risk of antimicrobial resistance, and novel diagnostic tests have been developed to address the limitations of standard urine culture in these cases. It is important that these novel tests be validated for agreement and error rates against the standard antibiotic susceptibility testing (AST) methods. METHODS Polymicrobial (≥two non-fastidious microorganisms) consecutive clinical urine specimens submitted for UTI diagnostic testing were included in this analysis. Specimens were tested with Pooled Antibiotic Susceptibility Testing (P-AST) and with broth microdilution/disk diffusion (BMD/DD) in parallel. Performance characteristics, such as essential agreement (EA%), very major errors (VMEs), and major errors (MEs), were assessed using Clinical and Laboratory Standards Institute (CLSI) standards. Specimens with P-AST-resistant and BMD/DD consensus-sensitive results were assessed for heteroresistance. Real-world clinical sample data were used to assess associations between increasing organism counts and average "sensitive" antibiotic count per sample. RESULTS The essential agreement between P-AST and standard isolate AST was ≥90%, VMEs were <2.0%, and MEs were <3.0%, meeting the CLSI guidelines for AST verification and validation studies. When heteroresistance was accounted for, overall VMEs and MEs were both <1.5%. The presence of additional non-fastidious organisms dropped the number of average "sensitive" antibiotics from 9.8 with one organism to 2.5 with five or more organisms. The presence of fastidious organisms did not have any meaningful impact. CONCLUSIONS P-AST, a component of the Guidance® UTI assay (Pathnostics, Irvine, CA, USA), performed within CLSI standards for AST in polymicrobial UTI diagnostic urine specimens.
Collapse
Affiliation(s)
- Richard A. Festa
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| | - Frank R. Cockerill
- Partner, Trusted Health Advisors, Orange, CA 92675, USA; (F.R.C.); (R.L.P.)
| | - Rick L. Pesano
- Partner, Trusted Health Advisors, Orange, CA 92675, USA; (F.R.C.); (R.L.P.)
| | - Emery Haley
- Department of Clinical Research, Pathnostics, Irvine, CA 92618, USA; (E.H.); (N.L.)
| | - Natalie Luke
- Department of Clinical Research, Pathnostics, Irvine, CA 92618, USA; (E.H.); (N.L.)
| | - Mohit Mathur
- Department of Medical Affairs, Pathnostics, Irvine, CA 92618, USA;
| | - Xiaofei Chen
- Department of Data and AI, Pathnostics, Irvine, CA 92618, USA; (X.C.); (J.H.)
| | - Jim Havrilla
- Department of Data and AI, Pathnostics, Irvine, CA 92618, USA; (X.C.); (J.H.)
| | - Michael Percaccio
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| | - Jesus Magallon
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| | - Shane Erickson
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| | - Mandana Ghashghaie
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| | - Alain Rosas
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| | - David Baunoch
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA; (R.A.F.); (M.P.); (J.M.); (S.E.); (M.G.); (A.R.)
| |
Collapse
|
4
|
Lomri N, Hulen C. Effects of Several Bile Acids on the Production of Virulence Factors by Pseudomonas aeruginosa. Life (Basel) 2024; 14:1676. [PMID: 39768382 PMCID: PMC11728048 DOI: 10.3390/life14121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of Pseudomonas aeruginosa to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM. However, a slight decrease in the adhesion index as well as a reduction in the virulence of the bacteria on the HT29 cell line could be observed. In this model, exposure of P. aeruginosa to bile acids showed a significant decrease in the production of LasB and AprA proteases due to the reduction in the expression of their genes. A decrease in pyocyanin production was also observed in relation to the effects of bile acids on the quorum sensing regulators. In order to have an effect on gene expression, it is necessary for bile acids to enter the bacteria. P. aeruginosa harbors two potential homologs of the eukaryotic genes encoding the bile acid transporters NTCP1 and NTCP2 that are expressed in hepatocytes and enterocytes, respectively. By carrying out a comparative BLAST-P between the amino acid sequences of the PAO1 proteins and those of NTCP1 and NTCP2, we identified the products of the PA1650 and PA3264 genes as the unique homologs of the two eukaryotic genes. Exposure of the mutant in the PA1650 gene to chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) showed a less significant effect on pyocyanin production than with the isogenic PAO1 strain. Also, no effect of CDCA on the PA3264 gene mutant was observed. This result indicated that CDCA should enter the bacteria by the transporter produced by this gene. The entry of LCA into bacteria seemed more complex and rather responded to a multifactorial system involving the product of the PA1650 gene but also the products of other genes encoding potential transporters.
Collapse
Affiliation(s)
- Noureddine Lomri
- Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France;
| | | |
Collapse
|
5
|
Haley E, Cockerill FR, Pesano RL, Festa RA, Luke N, Mathur M, Chen X, Havrilla J, Baunoch D. Pooled Antibiotic Susceptibility Testing Performs Within CLSI Standards for Validation When Measured Against Broth Microdilution and Disk Diffusion Antibiotic Susceptibility Testing of Cultured Isolates. Antibiotics (Basel) 2024; 13:1214. [PMID: 39766604 PMCID: PMC11672409 DOI: 10.3390/antibiotics13121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: While new methods for measuring antimicrobial susceptibility have been associated with improved patient outcomes, they should also be validated using standard protocols for error rates and other test metrics. The objective of this study was to validate a novel susceptibility assay for complicated and recurrent urinary tract infections (UTIs): pooled antibiotic susceptibility testing (P-AST). This assay was compared to broth microdilution (BMD) and disk diffusion (DD), following Clinical and Laboratory Standards Institute (CLSI) guidelines for assessment of error rates and agreement. Methods: This study analyzed consecutive fresh clinical urine specimens submitted for UTI diagnostic testing. Upon receipt, the urine samples were subjected in parallel to standard urine culture and multiplex polymerase chain reaction (M-PCR) for microbial identification and quantification. Specimens with the same monomicrobial non-fastidious bacteria detected by both M-PCR and standard urine culture (SUC) underwent standard antibiotic susceptibility testing (AST) and P-AST antibiotic susceptibility testing. Analysis was also undertaken to assess the presence of heteroresistance for specimens with P-AST-resistant and BMD/DD consensus-susceptible results. Results: The performance measures without correction for heteroresistance showed essential agreement (EA%) of ≥90%, very major errors (VMEs) of <1.5%, and major errors (MEs) of <3.0% for P-AST, all meeting the threshold guidelines established by CLSI for AST. The categorical agreement (CA%) also met acceptable criteria (>88%), as the majority of the errors were minor (mEs) with essential agreement. The very major and major error rates for P-AST decreased to <1.0% when heteroresistance was accounted for. Conclusions: The P-AST assay methodology is validated within acceptable parameters when compared to broth microdilution and disk diffusion using CLSI criteria.
Collapse
Affiliation(s)
- Emery Haley
- Department of Clinical Research, Pathnostics, Irvine, CA 92618, USA; (E.H.); (N.L.)
| | - Frank R. Cockerill
- Independent Researcher, Trusted Health Advisors, Orange, CA 92675, USA; (F.R.C.); (R.L.P.)
| | - Rick L. Pesano
- Independent Researcher, Trusted Health Advisors, Orange, CA 92675, USA; (F.R.C.); (R.L.P.)
| | - Richard A. Festa
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA;
| | - Natalie Luke
- Department of Clinical Research, Pathnostics, Irvine, CA 92618, USA; (E.H.); (N.L.)
| | - Mohit Mathur
- Department of Medical Affairs, Pathnostics, Irvine, CA 92618, USA;
| | - Xiaofei Chen
- Department of Informatics, Pathnostics, Irvine, CA 92618, USA; (X.C.); (J.H.)
| | - Jim Havrilla
- Department of Informatics, Pathnostics, Irvine, CA 92618, USA; (X.C.); (J.H.)
| | - David Baunoch
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA;
| |
Collapse
|
6
|
Hantouly AT, Lawand J, Alzobi O, Hoveidaei AH, Salman LA, Hameed S, Ahmed G, Citak M. High mortality rate and restricted mobility in above knee amputation following periprosthetic joint infection after total knee arthroplasty: A systematic review. Arch Orthop Trauma Surg 2024; 144:5273-5282. [PMID: 39327266 DOI: 10.1007/s00402-024-05578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE To systematically review the literature on the outcomes of above knee amputation as a salvage procedure after periprosthetic joint infection in total knee arthroplasty. METHODS This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Medline, Scopus, Web of Science, and Embase electronic databases were utilized to identify all studies evaluating clinical outcomes of patients with above knee amputation following PJI from inception to June 24, 2023. Studies were excluded for failure to report functional outcomes specifically related to AKA in PJI following TKA, utilizing surgical interventions other than amputation, AKA indicated for other reasons than PJI, technical studies, conference abstracts, case reports and non-English language. The quality of studies was assessed with the Methodological Index for Non-Randomized Studies (MINORS) criteria. RESULTS Seven retrospective studies, categorized as Therapeutic Level III evidence, were analyzed, involving a total of 188 patients who underwent AKA following PJI after TKA. The findings consistently indicate that post-AKA, patients experienced a notable decline in their level of independence and reported worsening ambulatory status. Infection and wound complications were common post-AKA, leading to revision surgeries, while the mortality rate ranged from 9 to 50% in the included studies. Polymicrobial organisms were frequently found in pre-AKA PJI, with MRSA being a common causative organism. CONCLUSIONS AKA due to PJI following TKA is associated with restricted mobility and high mortality rate. Polymicrobial infections and MRSA were identified as common infecting organisms, emphasizing the complexities and challenges associated with managing these infections. The reported functional outcomes, ambulatory status, complications, reoperations, and mortality rates highlight the importance of providing comprehensive, individualized care to these patients.
Collapse
Affiliation(s)
- Ashraf T Hantouly
- Department of Orthopaedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | - Jad Lawand
- University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0569, USA
| | - Osama Alzobi
- Department of Orthopaedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | - Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Loay A Salman
- Department of Orthopaedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | - Shamsi Hameed
- Department of Orthopaedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | - Ghalib Ahmed
- Department of Orthopaedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | - Mustafa Citak
- Department of Orthopaedic Surgery, HELIOS ENDO-Clinic Hamburg, 222767, Holstenstraße, Hamburg, Germany.
| |
Collapse
|
7
|
Abhadionmhen AO, Asogwa CN, Ezema ME, Nzeh RC, Ezeora NJ, Abhadiomhen SE, Echezona SC, Udanor CN. Machine Learning Approaches for Microorganism Identification, Virulence Assessment, and Antimicrobial Susceptibility Evaluation Using DNA Sequencing Methods: A Systematic Review. Mol Biotechnol 2024:10.1007/s12033-024-01309-0. [PMID: 39520638 DOI: 10.1007/s12033-024-01309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Microbial infections pose a substantial global health challenge, particularly impacting immunocompromised individuals and exacerbating the issue of antimicrobial resistance (AMR). High virulence of pathogens can lead to severe infections and prolonged antimicrobial treatment, increasing the risk of developing resistant strains. Integrating machine-learning (ML) with DNA sequencing technologies offers potential solutions by enhancing microbial identification, virulence assessment, and antimicrobial susceptibility evaluation. This review explores recent advancements in these integrated approaches, addressing current limitations and identifying gaps in the literature. A comprehensive literature search was conducted across databases including PubMed, Scopus, Web of Science, and IEEE Xplore, covering publications from January 2014 to June 2024. Using a detailed Boolean search string, relevant studies focusing on ML applications in microorganism identification, antimicrobial susceptibility testing, and microbial virulence were included. The screening process involved a two-stage review of titles, abstracts, and full texts, with data extraction and critical appraisal performed using the QIAO tool. Data were analyzed through narrative synthesis to identify common themes and innovations. Out of 1,650 initially identified records, 19 studies met the inclusion criteria. These studies primarily focused on AMR, with additional research on microbial virulence and identification. Machine learning algorithms such as Random Forest, Support Vector Machines, and Convolutional Neural Networks, combined with DNA sequencing techniques like Whole Genome Sequencing and Metagenomic Sequencing, demonstrated significant advancements in predictive accuracy and efficiency. High-quality studies achieved impressive performance metrics, including F1-scores up to 0.88 and AUC scores up to 0.96. The integration of ML and DNA sequencing technologies has significantly enhanced microbial analysis, improving the identification of pathogens, assessment of virulence, and evaluation of antimicrobial susceptibility. Despite advancements, challenges such as data quality, high costs, and model interpretability persist. This review highlights the need for continued innovation and provides recommendations for future research to address these limitations and improve disease management and public health strategies. The systematic review is registered with PROSPERO (CRD42024571347).
Collapse
Affiliation(s)
| | | | - Modesta Ero Ezema
- Department of Computer Science, University of Nigeria, Nsukka, Nigeria.
| | - Royransom Chiemela Nzeh
- Department of Computer Science, University of Nigeria, Nsukka, Nigeria
- School of Computer Science and Communication Engineering, JiangSu University, Zhenjiang, 212013, JiangSu, China
| | | | | | | | | |
Collapse
|
8
|
Petrilla A, Nemeth P, Fauszt P, Szilagyi-Racz A, Mikolas M, Szilagyi-Tolnai E, David P, Stagel A, Gal F, Gal K, Sohajda R, Pham T, Stundl L, Biro S, Remenyik J, Paholcsek M. Comparative analysis of the postadmission and antemortem oropharyngeal and rectal swab microbiota of ICU patients. Sci Rep 2024; 14:27179. [PMID: 39516251 PMCID: PMC11549221 DOI: 10.1038/s41598-024-78102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Shotgun metabarcoding was conducted to examine the microbiota in a total of 48 samples from 12 critically ill patients, analyzing samples from both the oropharynx and rectum. We aimed to compare their postadmission microbiota, characterized as moderately dysbiotic, with the severely dysbiotic antemortem microbiota associated with patients' deaths. We found that, compared with postadmission samples, patient antemortem swab samples presented moderate but not significantly decreased diversity indices. The antemortem oropharyngeal samples presented an increase in biofilm-forming bacteria, including Streptococcus oralis, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis. Although the septic shock rate was 67%, no significant differences were detected in the potential pathogen ratios when the microbiota was analyzed. A notable strain-sharing rate between the oropharynx and intestine was noted. By comparing postadmission and antemortem samples, microbial biomarkers of severe dysbiosis were pinpointed through the analysis of differentially abundant and uniquely emerging species in both oropharyngeal and rectal swabs. Demonstrating strong interconnectivity along the oral-intestinal axis, these biomarkers could serve as indicators of the progression of dysbiosis. Furthermore, the microbial networks of the oropharyngeal microbiota in deceased patients presented the lowest modularity, suggesting a vulnerable community structure. Our data also highlight the critical importance of introducing treatments aimed at enhancing the resilience of the oral cavity microbiome, thereby contributing to better patient outcomes.
Collapse
Affiliation(s)
- Annamaria Petrilla
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Nemeth
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Fauszt
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Anna Szilagyi-Racz
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Maja Mikolas
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Emese Szilagyi-Tolnai
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Peter David
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Ferenc Gal
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Kristof Gal
- Department of Oncoradiology, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Reka Sohajda
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Trinh Pham
- Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520, Turku, Finland
| | - Laszlo Stundl
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
9
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhance interspecies antagonism. mBio 2024; 15:e0095624. [PMID: 39105585 PMCID: PMC11389416 DOI: 10.1128/mbio.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B. Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
10
|
Dolan SK, Duong AT, Whiteley M. Convergent evolution in toxin detection and resistance provides evidence for conserved bacterial-fungal interactions. Proc Natl Acad Sci U S A 2024; 121:e2304382121. [PMID: 39088389 PMCID: PMC11317636 DOI: 10.1073/pnas.2304382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen Pseudomonas aeruginosa, which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus Aspergillus fumigatus. We show that gliotoxin exposure disrupts P. aeruginosa zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the A. fumigatus gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from P. aeruginosa appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that P. aeruginosa has evolved to survive exposure to an A. fumigatus disulfide-containing toxin in the natural environment.
Collapse
Affiliation(s)
- Stephen K. Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC29634
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Ashley T. Duong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| |
Collapse
|
11
|
Park J, Xiang Z, Liu Y, Li CH, Chen C, Nagaraj H, Nguyen T, Nabawy A, Koo H, Rotello VM. Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37613-37622. [PMID: 39007413 PMCID: PMC11624604 DOI: 10.1021/acsami.4c06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Zhenting Xiang
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tiffany Nguyen
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Horowitz RI, Fallon J, Freeman PR. Combining Double-Dose and High-Dose Pulsed Dapsone Combination Therapy for Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome and Co-Infections, Including Bartonella: A Report of 3 Cases and a Literature Review. Microorganisms 2024; 12:909. [PMID: 38792737 PMCID: PMC11124288 DOI: 10.3390/microorganisms12050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Three patients with relapsing and remitting borreliosis, babesiosis, and bartonellosis, despite extended anti-infective therapy, were prescribed double-dose dapsone combination therapy (DDDCT) for 8 weeks, followed by one or several two-week courses of pulsed high-dose dapsone combination therapy (HDDCT). We discuss these patients' cases to illustrate three important variables required for long-term remission. First, diagnosing and treating active co-infections, including Babesia and Bartonella were important. Babesia required rotations of multiple anti-malarial drug combinations and herbal therapies, and Bartonella required one or several 6-day HDDCT pulses to achieve clinical remission. Second, all prior oral, intramuscular (IM), and/or intravenous (IV) antibiotics used for chronic Lyme disease (CLD)/post-treatment Lyme disease syndrome (PTLDS), irrespective of the length of administration, were inferior in efficacy to short-term pulsed biofilm/persister drug combination therapy i.e., dapsone, rifampin, methylene blue, and pyrazinamide, which improved resistant fatigue, pain, headaches, insomnia, and neuropsychiatric symptoms. Lastly, addressing multiple factors on the 16-point multiple systemic infectious disease syndrome (MSIDS) model was important in achieving remission. In conclusion, DDDCT with one or several 6-7-day pulses of HDDCT, while addressing abnormalities on the 16-point MSIDS map, could represent a novel effective clinical and anti-infective strategy in CLD/PTLDS and associated co-infections including Bartonella.
Collapse
Affiliation(s)
- Richard I. Horowitz
- New York State Department of Health Tick-Borne Working Group, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
13
|
Manyahi J, Joachim A, Msafiri F, Migiro M, Mwingwa A, Kasubi M, Naburi H, Majigo MV. Polymicrobial bloodstream infections a risk factor for mortality in neonates at the national hospital, Tanzania: A case-control study. PLoS One 2024; 19:e0302076. [PMID: 38625965 PMCID: PMC11020784 DOI: 10.1371/journal.pone.0302076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Polymicrobial bloodstream infections (BSI) are difficult to treat since empiric antibiotics treatment are frequently less effective against multiple pathogens. The study aimed to compare outcomes in patients with polymicrobial and monomicrobial BSIs. METHODS The study was a retrospective case-control design conducted at Muhimbili National Hospital for data processed between July 2021 and June 2022. Cases were patients with polymicrobial BSI, and controls had monomicrobial BSI. Each case was matched to three controls by age, admitting ward, and duration of admission. Logistic regression was performed to determine independent risk factors for in-hospital and 30-day mortality. RESULTS Fifty patients with polymicrobial BSI and 150 with monomicrobial BSI were compared: the two arms had no significant differences in sex and comorbidities. The most frequent bacteria in polymicrobial BSI were Klebsiella pneumoniae 17% (17/100) and Enterobacter species 15% (15/100). In monomicrobial BSI, S. aureus 17.33% (26/150), Klebsiella pneumoniae 16.67% (25/150), and Acinetobacter species 15% (15/150) were more prevalent. Overall, isolates were frequently resistant to multiple antibiotics tested, and 52% (130/250) were multidrug resistance. The 30-day and in-hospital mortality were 33.5% (67/200) and 36% (72/200), respectively. On multivariable analysis, polymicrobial BSIs were independent risk factors for both in-hospital mortality (aOR 2.37, 95%CI 1.20-4.69, p = 0.01) and 30-day mortality (aOR 2.05, 95%CI 1.03-4.08), p = 0.04). In sub-analyses involving only neonates, polymicrobial BSI was an independent risk factor for both 30-day mortality (aOR 3.13, 95%CI 1.07-9.10, p = 0.04) and in-hospital mortality (aOR 5.08, 95%CI 1.60-16.14, p = 0.006). Overall, the median length of hospital stay post-BSIs was numerically longer in patients with polymicrobial BSIs. CONCLUSION Overall, polymicrobial BSI was a significant risk for mortality. Patients with polymicrobial BSI stay longer at the hospital than those with monomicrobial BSI. These findings call for clinicians to be more aggressive in managing polymicrobial BSI.
Collapse
Affiliation(s)
- Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Frank Msafiri
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mary Migiro
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Anthon Mwingwa
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mabula Kasubi
- Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Helga Naburi
- Department of Pediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mtebe Venance Majigo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
14
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhances interspecies antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588010. [PMID: 38617332 PMCID: PMC11014535 DOI: 10.1101/2024.04.03.588010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
15
|
Kamal S, Varshney K, Uayan DJ, Tenorio BG, Pillay P, Sava ST. Risk Factors and Clinical Characteristics of Pandrug-Resistant Pseudomonas aeruginosa. Cureus 2024; 16:e58114. [PMID: 38738125 PMCID: PMC11088816 DOI: 10.7759/cureus.58114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
The emergence of increasingly resistant strains of Pseudomonas aeruginosa is a great public health concern. Understanding the risk factors and clinical characteristics of patients with pandrug-resistant P. aeruginosa (PDR-PA) can help inform clinicians in creating guidelines for both prevention and management. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this scoping review retrieved existing literature on PDR-PA by searching PubMed, SCOPUS, Embase, Web of Science, and CINAHL databases. From the 21 studies that satisfied the inclusion criteria,1,059 P. aeruginosa samples were identified, and 161, or 15.2% of the isolates were found to have pandrug resistance. Furthermore, our review suggests that PDR-PA was largely hospital-acquired, and patients suffering from burn injuries and chronic lung diseases had a higher risk of colonization than other hospitalized individuals. In five out of the 21 studies, administration of the antibiotic colistin emerged to be the preferred therapeutic strategy. With regards to concurrent infections, Acinetobacter and Klebsiella species were found to occur most frequently with PDR-PA, suggesting mutualistic interactions that enable further antimicrobial resistance. In conclusion, this review showed the prevalence of PDR-PA and outlined the demographic and clinical profile of affected patients. Further research is needed to investigate the transmission and outcomes of PDR-PA infections and to find potential therapeutic strategies.
Collapse
Affiliation(s)
- Shahed Kamal
- Internal Medicine, Northern Hospital Epping, Melbourne, AUS
| | - Karan Varshney
- Public Health, School of Medicine, Deakin University, Waurn Ponds, AUS
| | - Danielle J Uayan
- Medicine, Ateneo School of Medicine and Public Health, Manila, PHL
| | - Bettina G Tenorio
- Medicine, Ateneo School of Medicine and Public Health, Philippines, Manila, PHL
| | - Preshon Pillay
- Faculty of Medicine and Dentistry, University of Alberta, Alberta, CAN
| | - Sergiu T Sava
- Medicine, School of Medicine, Deakin University, Geelong, AUS
| |
Collapse
|
16
|
Lories B, Belpaire TER, Smeets B, Steenackers HP. Competition quenching strategies reduce antibiotic tolerance in polymicrobial biofilms. NPJ Biofilms Microbiomes 2024; 10:23. [PMID: 38503782 PMCID: PMC10951329 DOI: 10.1038/s41522-024-00489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Bacteria typically live in dense communities where they are surrounded by other species and compete for a limited amount of resources. These competitive interactions can induce defensive responses that also protect against antimicrobials, potentially complicating the antimicrobial treatment of pathogens residing in polymicrobial consortia. Therefore, we evaluate the potential of alternative antivirulence strategies that quench this response to competition. We test three competition quenching approaches: (i) interference with the attack mechanism of surrounding competitors, (ii) inhibition of the stress response systems that detect competition, and (iii) reduction of the overall level of competition in the community by lowering the population density. We show that either strategy can prevent the induction of antimicrobial tolerance of Salmonella Typhimurium in response to competitors. Competition quenching strategies can thus reduce tolerance of pathogens residing in polymicrobial communities and could contribute to the improved eradication of these pathogens via traditional methods.
Collapse
Affiliation(s)
- Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Tom E R Belpaire
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics, and Sensors (MeBioS), Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors (MeBioS), Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Costa FMS, Granja A, Pérez RL, Warner IM, Reis S, Passos MLC, Saraiva MLMFS. Fluoroquinolone-Based Organic Salts (GUMBOS) with Antibacterial Potential. Int J Mol Sci 2023; 24:15714. [PMID: 37958698 PMCID: PMC10650486 DOI: 10.3390/ijms242115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic considered a public health concern worldwide. Strategic therapies are needed to replace antibacterials that are now ineffective. One approach entails the use of well-known antibacterials along with adjuvants that possess non-antibiotic properties but can extend the lifespan and enhance the effectiveness of the treatment, while also improving the suppression of resistance. In this regard, a group of uniform materials based on organic salts (GUMBOS) presents an alternative to this problem allowing the combination of antibacterials with adjuvants. Fluoroquinolones are a family of antibacterials used to treat respiratory and urinary tract infections with broad-spectrum activity. Ciprofloxacin and moxifloxacin-based GUMBOS were synthesized via anion exchange reactions with lithium and sodium salts. Structural characterization, thermal stability and octanol/water partition ratios were evaluated. The antibacterial profiles of most GUMBOS were comparable to their cationic counterparts when tested against Gram-positive S. aureus and Gram-negative E. coli, except for deoxycholate anion, which demonstrated the least effective antibacterial activity. Additionally, some GUMBOS were less cytotoxic to L929 fibroblast cells and non-hemolytic to red blood cells. Therefore, these agents exhibit promise as an alternative approach to combining drugs for treating infections caused by resistant bacteria.
Collapse
Affiliation(s)
- Fábio M. S. Costa
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30458, USA
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry, Cincinnati University, Cincinnati, OH 45221, USA
| | - Salette Reis
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Marieta L. C. Passos
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| |
Collapse
|
18
|
Black C, Al Mahmud H, Howle V, Wilson S, Smith AC, Wakeman CA. Development of a Polymicrobial Checkerboard Assay as a Tool for Determining Combinatorial Antibiotic Effectiveness in Polymicrobial Communities. Antibiotics (Basel) 2023; 12:1207. [PMID: 37508303 PMCID: PMC10376321 DOI: 10.3390/antibiotics12071207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The checkerboard assay is a well-established tool used to determine the antimicrobial effects of two compounds in combination. Usually, data collected from the checkerboard assay use visible turbidity and optical density as a readout. While helpful in traditional checkerboard assays, these measurements become less useful in a polymicrobial context as they do not enable assessment of the drug effects on the individual members of the community. The methodology described herein allows for the determination of cell viability through selective and differential plating of each individual species in a community while retaining much of the high-throughput nature of a turbidity-based analysis and requiring no specialized equipment. This methodology further improves turbidity-based measurements by providing a distinction between bacteriostatic versus bactericidal concentrations of antibiotics. Herein, we use this method to demonstrate that the clinically used antibiotic combination of ceftazidime and gentamicin works synergistically against Pseudomonas aeruginosa in monoculture but antagonistically in a polymicrobial culture also containing Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis, highlighting the fundamental importance of this methodology in improving clinical practices. We propose that this method could be implemented in clinical microbiology laboratories with minimal impact on the overall time for diagnosis.
Collapse
Affiliation(s)
- Caroline Black
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.B.)
| | - Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.B.)
| | - Victoria Howle
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Sabrina Wilson
- Department of Honors Studies, Texas Tech University, Lubbock, TX 79409, USA
| | - Allie C. Smith
- Department of Honors Studies, Texas Tech University, Lubbock, TX 79409, USA
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.B.)
| |
Collapse
|
19
|
Bose S, Singh DV, Adhya TK, Acharya N. Escherichia coli, but Not Staphylococcus aureus, Functions as a Chelating Agent That Exhibits Antifungal Activity against the Pathogenic Yeast Candida albicans. J Fungi (Basel) 2023; 9:jof9030286. [PMID: 36983454 PMCID: PMC10057578 DOI: 10.3390/jof9030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Humans are colonized by diverse populations of microbes. Infections by Candida albicans, an opportunistic fungal pathogen, are a result of imbalances in the gut microbial ecosystem and are due to the suppressed immunity of the host. Here, we explored the potential effects of the polymicrobial interactions of C. albicans with Staphylococcus aureus, a Gram-positive bacterium, and Escherichia coli, a Gram-negative bacterium, in dual and triple in vitro culture systems on their respective growth, morphology, and biofilms. We found that S. aureus promoted the fungal growth and hyphal transition of C. albicans through cell-to-cell contacts; contrarily, both the cell and cell-free culture filtrate of E. coli inhibited fungal growth. A yet to be identified secretory metabolite of E. coli functionally mimicked EDTA and EGTA to exhibit antifungal activity. These findings suggested that E. coli, but not S. aureus, functions as a chelating agent and that E. coli plays a dominant role in regulating excessive growth and, potentially, the commensalism of C. albicans. Using animal models of systemic candidiasis, we found that the E. coli cell-free filtrate suppressed the virulence of C. albicans. In general, this study unraveled a significant antimicrobial activity and a potential role in the nutritional immunity of E. coli, and further determining the underlying processes behind the E. coli–C. albicans interaction could provide critical information in understanding the pathogenicity of C. albicans.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
- KIIT School of Biotechnology, Bhubaneswar 751021, India
| | - Durg Vijai Singh
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824236, India
| | | | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
- Correspondence: ; Tel.: +91-674-230-4278; Fax: +91-674-230-0728
| |
Collapse
|
20
|
AtbFinder Diagnostic Test System Improves Optimal Selection of Antibiotic Therapy in Persons with Cystic Fibrosis. J Clin Microbiol 2023; 61:e0155822. [PMID: 36602344 PMCID: PMC9879114 DOI: 10.1128/jcm.01558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by mutations of CFTR that lead to increased viscous secretions, bacterial colonization, and recurrent infections. Chronic Pseudomonas aeruginosa infection in persons with CF is associated with progressive and accelerated lung function decline despite aggressive antibiotic treatment. We report the management of respiratory infections in persons with CF with antibiotic therapy that was based on the recommendations of AtbFinder, a novel, rapid, culture-based diagnostic test system that employs a novel paradigm of antibiotic selection. AtbFinder mimics bacterial interactions with antibiotics at concentrations that can be achieved in affected tissues or organs and models conditions of interbacterial interactions within polymicrobial biofilms. This open-label, single-arm, investigator-initiated clinical study was designed to identify the efficacy of antibiotics selected using AtbFinder in persons with CF. Microbiological and clinical parameters were assessed following the change of antibiotic therapy to antibiotics selected with AtbFinder between January 2016 and December 2018 and retrospectively compared with clinical data collected between January 2013 and December 2015. We enrolled 35 persons with CF (33 with chronic P. aeruginosa colonization). Antibiotics selected using AtbFinder resulted in clearance of P. aeruginosa in 81.8% of subsequent cultures, decreased pulmonary exacerbations from 1.21 per patient per annum to 0, and an increase in predicted percent predicted forced expiratory volume in 1 s up to 28.4% from baseline. The number of systemic antibiotic courses used in patients after switching to the AtbFinder-selected therapy was reduced from 355 to 178. These findings describe the superiority of antibiotic regimens selected with AtbFinder compared with routine antimicrobial susceptibility testing.
Collapse
|
21
|
Perikleous EP, Gkentzi D, Bertzouanis A, Paraskakis E, Sovtic A, Fouzas S. Antibiotic Resistance in Patients with Cystic Fibrosis: Past, Present, and Future. Antibiotics (Basel) 2023; 12:217. [PMID: 36830128 PMCID: PMC9951886 DOI: 10.3390/antibiotics12020217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Patients with cystic fibrosis (CF) are repeatedly exposed to antibiotics, especially during the pulmonary exacerbations of the disease. However, the available therapeutic strategies are frequently inadequate to eradicate the involved pathogens and most importantly, facilitate the development of antimicrobial resistance (AMR). The evaluation of AMR is demanding; conventional culture-based susceptibility-testing techniques cannot account for the lung microenvironment and/or the adaptive mechanisms developed by the pathogens, such as biofilm formation. Moreover, features linked to modified pharmaco-kinetics and pulmonary parenchyma penetration make the dosing of antibiotics even more challenging. In this review, we present the existing knowledge regarding AMR in CF, we shortly review the existing therapeutic strategies, and we discuss the future directions of antimicrobial stewardship. Due to the increasing difficulty in eradicating strains that develop AMR, the appropriate management should rely on targeting the underlying resistance mechanisms; thus, the interest in novel, molecular-based diagnostic tools, such as metagenomic sequencing and next-generation transcriptomics, has increased exponentially. Moreover, since the development of new antibiotics has a slow pace, the design of effective treatment strategies to eradicate persistent infections represents an urgency that requires consorted work. In this regard, both the management and monitoring of antibiotics usage are obligatory and more relevant than ever.
Collapse
Affiliation(s)
| | - Despoina Gkentzi
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
| | - Aris Bertzouanis
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
- Pediatric Respiratory Unit, University Hospital of Patras, 26504 Patras, Greece
| | - Emmanouil Paraskakis
- Pediatric Respiratory Unit, Department of Pediatrics, University of Crete, 71500 Heraklion, Greece
| | - Aleksandar Sovtic
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Pulmonology, Mother and Child Health Institute of Serbia, 11070 Belgrade, Serbia
| | - Sotirios Fouzas
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
- Pediatric Respiratory Unit, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
22
|
Mahmoud RY, Trizna EY, Sulaiman RK, Pavelyev RS, Gilfanov IR, Lisovskaya SA, Ostolopovskaya OV, Frolova LL, Kutchin AV, Guseva GB, Antina EV, Berezin MB, Nikitina LE, Kayumov AR. Increasing the Efficacy of Treatment of Staphylococcus aureus- Candida albicans Mixed Infections with Myrtenol. Antibiotics (Basel) 2022; 11:1743. [PMID: 36551400 PMCID: PMC9774912 DOI: 10.3390/antibiotics11121743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by various nosocomial microorganisms affect worldwide both immunocompromised and relatively healthy persons. Bacteria and fungi have different tools to evade antimicrobials, such as hydrolysis damaging the drug, efflux systems, and the formation of biofilm that significantly complicates the treatment of the infection. Here, we show that myrtenol potentiates the antimicrobial and biofilm-preventing activity of conventional drugs against S. aureus and C. albicans mono- and dual-species cultures. In our study, the two optical isomers, (-)-myrtenol and (+)-myrtenol, have been tested as either antibacterials, antifungals, or enhancers of conventional drugs. (+)-Myrtenol demonstrated a synergistic effect with amikacin, fluconazole, and benzalkonium chloride on 64-81% of the clinical isolates of S. aureus and C. albicans, including MRSA and fluconazole-resistant fungi, while (-)-myrtenol increased the properties of amikacin and fluconazole to repress biofilm formation in half of the S. aureus and C. albicans isolates. Furthermore, myrtenol was able to potentiate benzalkonium chloride up to sixteen-fold against planktonic cells in an S. aureus-C. albicans mixed culture and repressed the adhesion of S. aureus. The mechanism of both (-)-myrtenol and (+)-myrtenol synergy with conventional drugs was apparently driven by membrane damage since the treatment with both terpenes led to a significant drop in membrane potential similar to the action of benzalkonium chloride. Thus, due to the low toxicity of myrtenol, it seems to be a promising agent to increase the efficiency of the treatment of infections caused by bacteria and be fungi of the genus Candida as well as mixed fungal-bacterial infections, including resistant strains.
Collapse
Affiliation(s)
- Ruba Y. Mahmoud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Y. Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Rand K. Sulaiman
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Roman S. Pavelyev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilmir R. Gilfanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Varnishes and Paints Department, Kazan National Research Technological University, 420015 Kazan, Russia
| | - Svetlana A. Lisovskaya
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
- Scientific Research Institute of Epidemiology and Microbiology, 420015 Kazan, Russia
| | - Olga V. Ostolopovskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Larisa L. Frolova
- Institute of Chemistry, Federal Research Center “Komi Scientific Centre”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia
| | - Alexander V. Kutchin
- Institute of Chemistry, Federal Research Center “Komi Scientific Centre”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia
| | - Galina B. Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Elena V. Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Mikhail B. Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Liliya E. Nikitina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
23
|
Tetz G, Tetz V. Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection. Microorganisms 2022; 10:2383. [PMID: 36557636 PMCID: PMC9781420 DOI: 10.3390/microorganisms10122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Conventional antimicrobial susceptibility tests, including phenotypic and genotypic methods, are insufficiently accurate and frequently fail to identify effective antibiotics. These methods predominantly select therapies based on the antibiotic response of only the lead bacterial pathogen within pure bacterial culture. However, this neglects the fact that, in the majority of human infections, the lead bacterial pathogens are present as a part of multispecies communities that modulate the response of these lead pathogens to antibiotics and that multiple pathogens can contribute to the infection simultaneously. This discrepancy is a major cause of the failure of antimicrobial susceptibility tests to detect antibiotics that are effective in vivo. This review article provides a comprehensive overview of the factors that are missed by conventional antimicrobial susceptibility tests and it explains how accounting for these methods can aid the development of novel diagnostic approaches.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY 100141, USA
| | | |
Collapse
|
24
|
M. S. Costa F, Lúcia M. F. S. Saraiva M, L. C. Passos M. Ionic Liquids and Organic Salts with Antimicrobial Activity as a Strategy Against Resistant Microorganisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Ch'ng JH, Muthu M, Chong KKL, Wong JJ, Tan CAZ, Koh ZJS, Lopez D, Matysik A, Nair ZJ, Barkham T, Wang Y, Kline KA. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. THE ISME JOURNAL 2022; 16:2015-2026. [PMID: 35589966 PMCID: PMC9296619 DOI: 10.1038/s41396-022-01248-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
The contribution of biofilms to virulence and as a barrier to treatment is well-established for Staphylococcus aureus and Enterococcus faecalis, both nosocomial pathogens frequently isolated from biofilm-associated infections. Despite frequent co-isolation, their interactions in biofilms have not been well-characterized. We report that in combination, these two species can give rise to augmented biofilms biomass that is dependent on the activation of E. faecalis aerobic respiration. In E. faecalis, respiration requires both exogenous heme to activate the cydAB-encoded heme-dependent cytochrome bd, and the availability of O2. We determined that the ABC transporter encoded by cydDC contributes to heme import. In dual species biofilms, S. aureus provides the heme to activate E. faecalis respiration. S. aureus mutants deficient in heme biosynthesis were unable to augment biofilms whereas heme alone is sufficient to augment E. faecalis mono-species biofilms. Our results demonstrate that S. aureus-derived heme, likely in the form of released hemoproteins, promotes E. faecalis biofilm formation, and that E. faecalis gelatinase activity facilitates heme extraction from hemoproteins. This interspecies interaction and metabolic cross-feeding may explain the frequent co-occurrence of these microbes in biofilm-associated infections.
Collapse
Affiliation(s)
- Jun-Hong Ch'ng
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Disease Translational Research Program, National University Health System, Singapore, Singapore. .,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.
| | - Mugil Muthu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Casandra A Z Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Zachary J S Koh
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Daniel Lopez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zeus J Nair
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
26
|
Competition for Iron during Polymicrobial Infections May Increase Antifungal Drug Susceptibility-How Will It Impact Treatment Options? Infect Immun 2022; 90:e0005722. [PMID: 35289634 DOI: 10.1128/iai.00057-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interaction between microbes may influence antimicrobial susceptibility of one or more of the microbes, with studies pointing to increased resistance in these scenarios. Hattab et al. provided a novel perspective by identifying synergism between fluconazole and bacterial antagonism in the context of Candida albicans-Pseudomonas aeruginosa co-infection. Further research is required to translate these findings to the clinical setting, especially in the era of increasing antifungal resistance.
Collapse
|
27
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|
28
|
Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics (Basel) 2021; 10:antibiotics10070766. [PMID: 34202495 PMCID: PMC8300688 DOI: 10.3390/antibiotics10070766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.
Collapse
|