1
|
Moallef S, Balasubramanian R, Krieger N, Tabb LP, Chen JT, Hanage WP, Bassett MT, Cowger TL. Advancing health equity in wastewater-based epidemiology: A global critical review and conceptual framework. SSM Popul Health 2025; 30:101786. [PMID: 40248458 PMCID: PMC12005304 DOI: 10.1016/j.ssmph.2025.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Population health data from wastewater-based epidemiology (WBE) are being used at unprecedented scales worldwide, yet there is limited focus on how to advance health equity in the field. Addressing this gap, we conducted a critical review of published literature in PubMed, targeting studies at the intersection of WBE and health equity. Of 145 articles assessed in full-text screening, we identified 68 studies with health equity considerations. These studies spanned various spatial scales and biochemical targets, addressing domains such as study design and methodologies, ethical and social considerations, and the feasibility and implementation of WBE monitoring. We summarize and synthesize health equity-oriented considerations across the identified domains. We further propose five key considerations to advance health equity in WBE research and practice, and integrate these considerations into a conceptual framework to illustrate how they apply to major steps in the process of conducting WBE. These considerations include global inequities in WBE access, the need to prevent potential harms and stigma via data misuse (inappropriate reporting of data and potential use of WBE for criminal surveillance), and the importance of regulation and community engagement, particularly amidst the growing privatization of WBE, especially in the United States.
Collapse
Affiliation(s)
- Soroush Moallef
- François–Xavier Bagnoud (FXB) Center for Health and Human Rights, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ruchita Balasubramanian
- François–Xavier Bagnoud (FXB) Center for Health and Human Rights, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - William P. Hanage
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mary T. Bassett
- François–Xavier Bagnoud (FXB) Center for Health and Human Rights, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tori L. Cowger
- François–Xavier Bagnoud (FXB) Center for Health and Human Rights, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Annan J, Henderson R, Gray M, Clark RG, Sarin C, Black K. A Review of Wastewater-Based Epidemiology for the SARS-CoV-2 Virus in Rural, Remote, and Resource-Constrained Settings Internationally: Insights for Implementation, Research, and Policy for First Nations in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1429. [PMID: 39595696 PMCID: PMC11593473 DOI: 10.3390/ijerph21111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is regarded as a support tool for detecting and assessing the prevalence of infectious diseases at a population level. For rural, remote, and resource-constrained communities with little access to other public health monitoring tools, WBE can be a low-cost approach to filling gaps in population health knowledge to inform public health risk assessment and decision-making. This rapid review explores and discusses unique considerations of WBE in key settings, with a focus on the detection of the SARS-CoV-2 virus, which has rapidly expanded WBE infrastructure globally. To frame our understanding of possibilities for WBE with First Nations in Alberta, we address the following questions: What are the unique considerations and challenges for WBE under similar contexts in rural, remote, or resource-constrained settings? What are the resources and expertise required to support WBE? This review identifies several unique considerations for WBE in rural, remote, and resource-constrained communities, including costs, accessibility, operator capacity, wastewater infrastructure, and data mobilization-highlighting the need for equity in WBE. In summary, most resource-constrained communities require additional support from external research and/or governmental bodies to undertake WBE.
Collapse
Affiliation(s)
- Jessica Annan
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (J.A.); (R.H.)
| | - Rita Henderson
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (J.A.); (R.H.)
| | - Mandi Gray
- Department of Sociology, Trent University, Oshawa, NG11 8NS, Canada;
| | - Rhonda Gail Clark
- Department of Biological Sciences, Geomicrobiology Group, University of Calgary, Calgary, AB T2N 1N5, Canada;
| | - Chris Sarin
- Indigenous Services Canada, First Nations and Inuit Health Branch, Alberta Region, Canada Place, Suite 730 9700, Jasper Avenue, Edmonton, AB T5J 4C3, Canada;
| | - Kerry Black
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
B J A, Swamy AHV, Nyamagoud SB, George A, D N. Respiratory syncytial virus: an overview of clinical manifestations and management in the Indian pediatric population. Monaldi Arch Chest Dis 2024. [PMID: 39371038 DOI: 10.4081/monaldi.2024.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
Respiratory syncytial virus (RSV) plays a major part in causing lower respiratory tract infections in younger populations, especially in infants and pediatric patients, causing a higher rate of morbidity and mortality in the respective population, affecting 60% of the population globally. Typically, identifying the virus in the patient's respiratory secretions is important for laboratory validation of a clinically suspected RSV infection. Unfortunately, the only available preventive measure to lower the incidence for infants who are at high risk of RSV-induced hospitalization is palivizumab prophylaxis. Treatment strategies to manage RSV involve using an antiviral drug that is Ribavirin along with bronchodilators, nebulized adrenaline (epinephrine), and nebulized hypertonic saline. Providing patients with alternative treatment options like vitamin D-cathelicidin as well as probiotics and prebiotics can help reduce the intensity of the infection. This review article focuses on the epidemiology, clinical manifestation, prophylaxis, and available treatment options for RSV infections in infants, children, and young adults.
Collapse
Affiliation(s)
- Abhishek B J
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | | | | | - Anupama George
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | - Namratha D
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| |
Collapse
|
4
|
Branda F, Ceccarelli G, Ciccozzi M, Scarpa F. Strengthening community resilience: lessons from COVID-19 for mpox prevention. Lancet 2024; 404:929. [PMID: 39182503 DOI: 10.1016/s0140-6736(24)01752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome 00128, Italy.
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome 00128, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024; 10:e49185. [PMID: 38241067 PMCID: PMC10837764 DOI: 10.2196/49185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Public health surveillance plays a vital role in informing public health decision-making. The onset of the COVID-19 pandemic in early 2020 caused a widespread shift in public health priorities. Global efforts focused on COVID-19 monitoring and contact tracing. Existing public health programs were interrupted due to physical distancing measures and reallocation of resources. The onset of the COVID-19 pandemic intersected with advancements in technologies that have the potential to support public health surveillance efforts. OBJECTIVE This scoping review aims to explore emergent public health surveillance methods during the early COVID-19 pandemic to characterize the impact of the pandemic on surveillance methods. METHODS A scoping search was conducted in multiple databases and by scanning key government and public health organization websites from March 2020 to January 2022. Published papers and gray literature that described the application of new or revised approaches to public health surveillance were included. Papers that discussed the implications of novel public health surveillance approaches from ethical, legal, security, and equity perspectives were also included. The surveillance subject, method, location, and setting were extracted from each paper to identify trends in surveillance practices. Two public health epidemiologists were invited to provide their perspectives as peer reviewers. RESULTS Of the 14,238 unique papers, a total of 241 papers describing novel surveillance methods and changes to surveillance methods are included. Eighty papers were review papers and 161 were single studies. Overall, the literature heavily featured papers detailing surveillance of COVID-19 transmission (n=187). Surveillance of other infectious diseases was also described, including other pathogens (n=12). Other public health topics included vaccines (n=9), mental health (n=11), substance use (n=4), healthy nutrition (n=1), maternal and child health (n=3), antimicrobial resistance (n=2), and misinformation (n=6). The literature was dominated by applications of digital surveillance, for example, by using big data through mobility tracking and infodemiology (n=163). Wastewater surveillance was also heavily represented (n=48). Other papers described adaptations to programs or methods that existed prior to the COVID-19 pandemic (n=9). The scoping search also found 109 papers that discuss the ethical, legal, security, and equity implications of emerging surveillance methods. The peer reviewer public health epidemiologists noted that additional changes likely exist, beyond what has been reported and available for evidence syntheses. CONCLUSIONS The COVID-19 pandemic accelerated advancements in surveillance and the adoption of new technologies, especially for digital and wastewater surveillance methods. Given the investments in these systems, further applications for public health surveillance are likely. The literature for surveillance methods was dominated by surveillance of infectious diseases, particularly COVID-19. A substantial amount of literature on the ethical, legal, security, and equity implications of these emerging surveillance methods also points to a need for cautious consideration of potential harm.
Collapse
Affiliation(s)
- Emily C Clark
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Sophie Neumann
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Stephanie Hopkins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Alyssa Kostopoulos
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Leah Hagerman
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Maureen Dobbins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
- School of Nursing, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Rogawski McQuade ET, Blake IM, Brennhofer SA, Islam MO, Sony SSS, Rahman T, Bhuiyan MH, Resha SK, Wettstone EG, Hughlett L, Reagan C, Elwood SE, Mira Y, Mahmud AS, Hosan K, Hoque MR, Alam MM, Rahman M, Shirin T, Haque R, Taniuchi M. Real-time sewage surveillance for SARS-CoV-2 in Dhaka, Bangladesh versus clinical COVID-19 surveillance: a longitudinal environmental surveillance study (December, 2019-December, 2021). THE LANCET. MICROBE 2023; 4:e442-e451. [PMID: 37023782 PMCID: PMC10069819 DOI: 10.1016/s2666-5247(23)00010-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Clinical surveillance for COVID-19 has typically been challenging in low-income and middle-income settings. From December, 2019, to December, 2021, we implemented environmental surveillance in a converging informal sewage network in Dhaka, Bangladesh, to investigate SARS-CoV-2 transmission across different income levels of the city compared with clinical surveillance. METHODS All sewage lines were mapped, and sites were selected with estimated catchment populations of more than 1000 individuals. We analysed 2073 sewage samples, collected weekly from 37 sites, and 648 days of case data from eight wards with varying socioeconomic statuses. We assessed the correlations between the viral load in sewage samples and clinical cases. FINDINGS SARS-CoV-2 was consistently detected across all wards (low, middle, and high income) despite large differences in reported clinical cases and periods of no cases. The majority of COVID-19 cases (26 256 [55·1%] of 47 683) were reported from Ward 19, a high-income area with high levels of clinical testing (123 times the number of tests per 100 000 individuals compared with Ward 9 [middle-income] in November, 2020, and 70 times the number of tests per 100 000 individuals compared with Ward 5 [low-income] in November, 2021), despite containing only 19·4% of the study population (142 413 of 734 755 individuals). Conversely, a similar quantity of SARS-CoV-2 was detected in sewage across different income levels (median difference in high-income vs low-income areas: 0·23 log10 viral copies + 1). The correlation between the mean sewage viral load (log10 viral copies + 1) and the log10 clinical cases increased with time (r = 0·90 in July-December, 2021 and r=0·59 in July-December, 2020). Before major waves of infection, viral load quantity in sewage samples increased 1-2 weeks before the clinical cases. INTERPRETATION This study demonstrates the utility and importance of environmental surveillance for SARS-CoV-2 in a lower-middle-income country. We show that environmental surveillance provides an early warning of increases in transmission and reveals evidence of persistent circulation in poorer areas where access to clinical testing is limited. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Elizabeth T Rogawski McQuade
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Isobel M Blake
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK
| | - Stephanie A Brennhofer
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | - Erin G Wettstone
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lauren Hughlett
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Claire Reagan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sarah E Elwood
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Ayesha S Mahmud
- Department of Demography, University of California at Berkeley, Berkeley, CA, USA
| | - Kawsar Hosan
- a2i, Dhaka, Bangladesh; Department of Economics, Jahangirnagar University, Dhaka, Bangladesh
| | | | | | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | | | - Mami Taniuchi
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Civil and Environmental Engineering Systems and Environment, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Xian C, Zhang J, Zhao S, Li XG. Gut-on-a-chip for disease models. J Tissue Eng 2023; 14:20417314221149882. [PMID: 36699635 PMCID: PMC9869227 DOI: 10.1177/20417314221149882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
The intestinal tract is a vital organ responsible for digestion and absorption in the human body and plays an essential role in pathogen invasion. Compared with other traditional models, gut-on-a-chip has many unique advantages, and thereby, it can be considered as a novel model for studying intestinal functions and diseases. Based on the chip design, we can replicate the in vivo microenvironment of the intestine and study the effects of individual variables on the experiment. In recent years, it has been used to study several diseases. To better mimic the intestinal microenvironment, the structure and function of gut-on-a-chip are constantly optimised and improved. Owing to the complexity of the disease mechanism, gut-on-a-chip can be used in conjunction with other organ chips. In this review, we summarise the human intestinal structure and function as well as the development and improvement of gut-on-a-chip. Finally, we present and discuss gut-on-a-chip applications in inflammatory bowel disease (IBD), viral infections and phenylketonuria. Further improvement of the simulation and high throughput of gut-on-a-chip and realisation of personalised treatments are the problems that should be solved for gut-on-a-chip as a disease model.
Collapse
Affiliation(s)
| | | | | | - Xiang-Guang Li
- Xiang-Guang Li, Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuan Xi Road (GDUT), Panyu District, Guangzhou 510006, China.
| |
Collapse
|
8
|
Dimitrakopoulos L, Kontou A, Strati A, Galani A, Kostakis M, Kapes V, Lianidou E, Thomaidis N, Markou A. Evaluation of viral concentration and extraction methods for SARS-CoV-2 recovery from wastewater using droplet digital and quantitative RT-PCR. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100224. [PMID: 37520924 PMCID: PMC9222221 DOI: 10.1016/j.cscee.2022.100224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
The ongoing pandemic caused by the emergence of SARS-CoV-2 has resulted in millions of deaths worldwide despite the various measures announced by the authorities. Wastewater-based epidemiology has the ability to provide a day-to-day estimation of the number of infected people in a fast and cost-effective manner. However, owing to the complex nature of wastewater, wastewater monitoring for viral genome copies is affected by the extensive viral fragmentation that takes place all the way to the sewage and the analytical lab. The aim of this study was to evaluate different methodologies for the concentration and extraction of viruses in wastewaters and to select and improve an option that maximizes the recovery of SARS-CoV-2. We compare 5 different concentration methods and 4 commercially available kits for the RNA extraction. To evaluate the performance and the recovery of these, SARS-CoV-2 isolated from patients was used as a spike control. Additionally, the presence of SARS-CoV-2 in all wastewater samples was determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and N3). Using spiked samples, recoveries were estimated 2.1-37.6% using different extraction kits and 0.1-2.1% using different concentration kits. It was found that a direct capture-based method, evaluated against a variety of concentration methods, is the best in terms of recovery, time and cost. Interestingly, we noticed a good agreement between the results provided by RT-qPCR and RT-ddPCR in terms of recovery. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2. Overall, data presented here reinforces the validity of WBE for SARS-CoV-2 surveillance, uncovers potential caveats in the selection of concentration and extraction protocols and points towards optimal solutions to maximize its potential.
Collapse
Affiliation(s)
- Lampros Dimitrakopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Kontou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Areti Strati
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Evrikleia Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| |
Collapse
|
9
|
Donia A, Furqan Shahid M, Hassan SU, Shahid R, Ahmad A, Javed A, Nawaz M, Yaqub T, Bokhari H. Integration of RT-LAMP and Microfluidic Technology for Detection of SARS-CoV-2 in Wastewater as an Advanced Point-of-Care Platform. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:364-373. [PMID: 35508752 PMCID: PMC9067896 DOI: 10.1007/s12560-022-09522-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 05/21/2023]
Abstract
Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on extracted RNA of seven wastewater samples from COVID-19 hotspots. RT‑LAMP assay was also performed on wastewater samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) and N genes so we targeted both to find the best target gene for SARS-CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 wastewater samples were positive for N gene (Ct range 37-39), and negative for ORF1ab, suggesting that N gene could be the best target gene for SARS-CoV-2 detection. RT-LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels except microchannels which subjected to RT-LAMP for targeting N region after RNA extraction (yellow color) in 6 out of 7 samples. This study shows that SARS-CoV-2 was successfully detected from wastewater samples using RT-LAMP in microfluidic chips. This study brings the novelty involving the use of wastewater samples for detection of SARS-CoV-2 without previous virus concentration and with/without RNA extraction.
Collapse
Affiliation(s)
- Ahmed Donia
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Furqan Shahid
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sammer-ul Hassan
- Department of Mechanical Engineering, University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aneela Javed
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habib Bokhari
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
- Kohsar University Murree, Murree, Pakistan
| |
Collapse
|
10
|
Jiang AZ, Nian F, Chen H, McBean EA. Passive Samplers, an Important Tool for Continuous Monitoring of the COVID-19 Pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32326-32334. [PMID: 35137317 PMCID: PMC9072756 DOI: 10.1007/s11356-022-19073-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
The global pandemic caused by COVID-19 has resulted in major costs around the world, costs with dimensions in every aspect, from peoples' daily living to the global economy. As the pandemic progresses, the virus evolves, and more vaccines become available, and the 'battle against the virus' continues. As part of the battle, Wastewater-Based Epidemiology (WBE) technologies are being widely deployed in essential roles for SARS-CoV-2 detection and monitoring. While focusing on demonstrating the advantages of passive samplers as a tool in WBE, this review provides a holistic view of the current WBE applications in monitoring SARS-CoV-2 with the integration of the most up-to-date data. A novel scenario example based on a recent Nanjing (China) outbreak in July 2021 is used to illustrate the potential benefits of using passive samplers to monitor COVID-19 and to facilitate effective control of future major outbreaks. The presented contents and how the application of passive samplers indicates that this technology can be beneficial at different levels, varying from building to community to regional. Countries and regions that have the pandemic well under control or have low positive case occurrences have the potential to significantly benefit from deploying passive samplers as a measure to identify and suppress outbreaks.
Collapse
Affiliation(s)
- Albert Z. Jiang
- School of Engineering, University of Guelph, 50 Stone Rd. E, Guelph, N1G 2W1 Canada
| | - Fulin Nian
- Department of Digestive, Shanghai Pudong Hospital, Fudan University Affiliated Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399 China
| | - Han Chen
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin, 300071 China
| | - Edward A. McBean
- School of Engineering, University of Guelph, 50 Stone Rd. E, Guelph, N1G 2W1 Canada
| |
Collapse
|
11
|
Duma Z, Chuturgoon AA, Ramsuran V, Edward V, Naidoo P, Mpaka-Mbatha MN, Bhengu KN, Nembe N, Pillay R, Singh R, Mkhize-Kwitshana ZL. The challenges of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in low-middle income countries and possible cost-effective measures in resource-limited settings. Global Health 2022; 18:5. [PMID: 35065670 PMCID: PMC8783193 DOI: 10.1186/s12992-022-00796-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Diagnostic testing for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection remains a challenge around the world, especially in low-middle-income countries (LMICs) with poor socio-economic backgrounds. From the beginning of the pandemic in December 2019 to August 2021, a total of approximately 3.4 billion tests were performed globally. The majority of these tests were restricted to high income countries. Reagents for diagnostic testing became a premium, LMICs either cannot afford or find manufacturers unwilling to supply them with expensive analytical reagents and equipment. From March to December 2020 obtaining testing kits for SARS-CoV-2 testing was a challenge. As the number of SARS-CoV-2 infection cases increases globally, large-scale testing still remains a challenge in LMICs. The aim of this review paper is to compare the total number and frequencies of SARS-CoV-2 testing in LMICs and high-income countries (HICs) using publicly available data from Worldometer COVID-19, as well as discussing possible interventions and cost-effective measures to increase testing capability in LMICs. In summary, HICs conducted more SARS-CoV-2 testing (USA: 192%, Australia: 146%, Switzerland: 124% and Canada: 113%) compared to middle-income countries (MICs) (Vietnam: 43%, South Africa: 29%, Brazil: 27% and Venezuela: 12%) and low-income countries (LICs) (Bangladesh: 6%, Uganda: 4% and Nigeria: 1%). Some of the cost-effective solutions to counteract the aforementioned problems includes using saliva instead of oropharyngeal or nasopharyngeal swabs, sample pooling, and testing high-priority groups to increase the number of mass testing in LMICs.
Collapse
Affiliation(s)
- Zamathombeni Duma
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa.
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa.
| | - Anil A Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
| | - Veron Ramsuran
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
| | - Vinodh Edward
- The Aurum Institute, Parktown, Johannesburg, 2194, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa
| | - Miranda N Mpaka-Mbatha
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa
- Department of Biomedical Sciences, Mangosuthu University of Technology, Umlazi, Durban, 4031, South Africa
| | - Khethiwe N Bhengu
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa
- Department of Biomedical Sciences, Mangosuthu University of Technology, Umlazi, Durban, 4031, South Africa
| | - Nomzamo Nembe
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa
| | - Roxanne Pillay
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa
- Department of Biomedical Sciences, Mangosuthu University of Technology, Umlazi, Durban, 4031, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban, 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
12
|
Joseph SM, Iyer DS, Pillai RV. Ayurvedic Response to COVID-19 Pandemic in Kerala, India and Its Impact on Quarantined Individuals - A Community Case Study. Front Public Health 2021; 9:732523. [PMID: 34722442 PMCID: PMC8554199 DOI: 10.3389/fpubh.2021.732523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 infection has resulted in massive loss of valuable human lives, extensive destruction of livelihoods and financial crisis of unprecedented levels across the globe. Kerala, a province in India, like the rest of the country, launched preventive and control measures to mitigate the impact of COVID-19 early in 2020. The Government of Kerala started 1206 Ayur Raksha Clinics and associated Task Forces across the state in April 2020 to improve the reach and penetration of Ayurvedic preventive, therapeutic and convalescent care strategies for the COVID-19 pandemic. The implementation framework of the strategy was properly designed, and had a decentralized, people-centered, and participatory approach. Kerala has robust public health machinery with adequate human resource and infrastructure in the conventional medicine sector. This community case study examines how the decentralized organizational framework was effectively utilized for facilitating the delivery of Ayurvedic services in the COVID-19 situation. Key observations from the study are: Ayurvedic programs implemented systematically, under an organized framework with social participation enables wider utilization of the services. Such a framework is easily replicable even in resource-poor settings. Rather than a pluralistic approach, an integrative health system approach may be more viable in the Kerala scenario in public health emergencies.
Collapse
Affiliation(s)
| | - Divya S Iyer
- Department of Ayush, Government of Kerala, Thiruvananthapuram, India
| | | |
Collapse
|
13
|
Amereh F, Negahban-Azar M, Isazadeh S, Dabiri H, Masihi N, Jahangiri-Rad M, Rafiee M. Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens 2021. [PMID: 34451410 DOI: 10.3390/pathogens10080946.pmid:34451410;pmcid:pmc8402176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The etiological agent for novel coronavirus (COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), not only affects the human respiratory system, but also the gastrointestinal tract resulting in gastrointestinal manifestations. The high rate of asymptomatic infected individuals has challenged the estimation of infection spread based on patients' surveillance, and thus alternative approaches such as wastewater-based epidemiology (WBE) have been proposed. Accordingly, the number of publications on this topic has increased substantially. The present systematic review thus aimed at providing state-of-the-knowledge on the occurrence and existing methods for sampling procedures, detection/quantification of SARS-CoV-2 in sewage samples, as well as anticipating challenges and providing future research direction to improve the current scientific knowledge. Articles were collected from three scientific databases. Only studies reporting measurements of virus in stool, urine, and wastewater samples were included. Results showed that improving the scientific community's understanding in these avenues is essential if we are to develop appropriate policy and management tools to address this pandemic pointing particularly towards WBE as a new paradigm in public health. It was also evident that standardized protocols are needed to ensure reproducibility and comparability of outcomes. Areas that require the most improvements are sampling procedures, concentration/enrichment, detection, and quantification of virus in wastewater, as well as positive controls. Results also showed that selecting the most accurate population estimation method for WBE studies is still a challenge. While the number of people infected in an area could be approximately estimated based on quantities of virus found in wastewater, these estimates should be cross-checked by other sources of information to draw a more comprehensive conclusion. Finally, wastewater surveillance can be useful as an early warning tool, a management tool, and/or a way for investigating vaccination efficacy and spread of new variants.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Siavash Isazadeh
- Environmental Service, Suez Water North America, Paramus, NJ 07652, USA
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Najmeh Masihi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Mahsa Jahangiri-Rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19168, Iran
| | - Mohammad Rafiee
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| |
Collapse
|
14
|
Amereh F, Negahban-Azar M, Isazadeh S, Dabiri H, Masihi N, Jahangiri-rad M, Rafiee M. Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens 2021; 10:946. [PMID: 34451410 PMCID: PMC8402176 DOI: 10.3390/pathogens10080946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The etiological agent for novel coronavirus (COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), not only affects the human respiratory system, but also the gastrointestinal tract resulting in gastrointestinal manifestations. The high rate of asymptomatic infected individuals has challenged the estimation of infection spread based on patients' surveillance, and thus alternative approaches such as wastewater-based epidemiology (WBE) have been proposed. Accordingly, the number of publications on this topic has increased substantially. The present systematic review thus aimed at providing state-of-the-knowledge on the occurrence and existing methods for sampling procedures, detection/quantification of SARS-CoV-2 in sewage samples, as well as anticipating challenges and providing future research direction to improve the current scientific knowledge. Articles were collected from three scientific databases. Only studies reporting measurements of virus in stool, urine, and wastewater samples were included. Results showed that improving the scientific community's understanding in these avenues is essential if we are to develop appropriate policy and management tools to address this pandemic pointing particularly towards WBE as a new paradigm in public health. It was also evident that standardized protocols are needed to ensure reproducibility and comparability of outcomes. Areas that require the most improvements are sampling procedures, concentration/enrichment, detection, and quantification of virus in wastewater, as well as positive controls. Results also showed that selecting the most accurate population estimation method for WBE studies is still a challenge. While the number of people infected in an area could be approximately estimated based on quantities of virus found in wastewater, these estimates should be cross-checked by other sources of information to draw a more comprehensive conclusion. Finally, wastewater surveillance can be useful as an early warning tool, a management tool, and/or a way for investigating vaccination efficacy and spread of new variants.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Siavash Isazadeh
- Environmental Service, Suez Water North America, Paramus, NJ 07652, USA;
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran;
| | - Najmeh Masihi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
| | - Mahsa Jahangiri-rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19168, Iran;
| | - Mohammad Rafiee
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| |
Collapse
|
15
|
Caixeta DC, Oliveira SW, Cardoso-Sousa L, Cunha TM, Goulart LR, Martins MM, Marin LM, Jardim ACG, Siqueira WL, Sabino-Silva R. One-Year Update on Salivary Diagnostic of COVID-19. Front Public Health 2021; 9:589564. [PMID: 34150692 PMCID: PMC8210583 DOI: 10.3389/fpubh.2021.589564] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/31/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is a global health problem, which is challenging healthcare worldwide. In this critical review, we discussed the advantages and limitations in the implementation of salivary diagnostic platforms of COVID-19. The diagnostic test of COVID-19 by invasive nasopharyngeal collection is uncomfortable for patients and requires specialized training of healthcare professionals in order to obtain an appropriate collection of samples. Additionally, these professionals are in close contact with infected patients or suspected cases of COVID-19, leading to an increased contamination risk for frontline healthcare workers. Although there is a colossal demand for novel diagnostic platforms with non-invasive and self-collection samples of COVID-19, the implementation of the salivary platforms has not been implemented for extensive scale testing. Up to date, several cross-section and clinical trial studies published in the last 12 months support the potential of detecting SARS-CoV-2 RNA in saliva as a biomarker for COVID-19, providing a self-collection, non-invasive, safe, and comfortable procedure. Therefore, the salivary diagnosis is suitable to protect healthcare professionals and other frontline workers and may encourage patients to get tested due to its advantages over the current invasive methods. The detection of SARS-CoV-2 in saliva was substantial also in patients with a negative nasopharyngeal swab, indicating the presence of false negative results. Furthermore, we expect that salivary diagnostic devices for COVID-19 will continue to be used with austerity without excluding traditional gold standard specimens to detect SARS-CoV-2.
Collapse
Affiliation(s)
- Douglas Carvalho Caixeta
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Brazil
| | - Stephanie Wutke Oliveira
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Brazil
- School of Dentistry, Federal University of Uberlandia, Uberlandia, Brazil
| | - Leia Cardoso-Sousa
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Brazil
| | - Mario Machado Martins
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Brazil
| | - Lina Maria Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Brazil
- São Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil
| | | | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Brazil
| |
Collapse
|