1
|
Gabrys AM, Dietrich CH, Trivellone V. Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach. Pathogens 2025; 14:74. [PMID: 39861035 PMCID: PMC11768818 DOI: 10.3390/pathogens14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Phytoplasmas are a group of plant-pathogenic, cell-wall-less bacteria vectored primarily by leafhoppers (Hemiptera Cicadellidae), one of the most diverse families of insects. Despite the importance of documenting associations between phytoplasmas, their insect vectors, and plant hosts to prevent disease outbreaks, such knowledge is currently highly incomplete and largely neglects the diversity of the system in natural areas. Here, we used anchored hybrid enrichment (AHE) to recover the DNA of five plant genes (rbcL, matK, ITS1, ITS2, and trnH-psbA) in 58 phloem-feeding leafhoppers from around the world that had previously tested positive for phytoplasma infection. Using BLASTn and a strict filtering approach, we assigned taxonomic classifications to the plant sequences and tested for cophylogenetic signals between potential Deltocephalinae leafhopper vectors and their associated plants. We observed incongruence between plant and insect phylogenies. Many leafhopper species, including presumed grass specialists, fed on distantly related plant lineages; 66% of sampled leafhoppers fed on plants from at least two different orders. By disentangling phytoplasma-leafhopper-plant interactions, we identify locations at risk of phytoplasma disease outbreaks. Furthermore, the observed wide diet breadth raises questions about how phytoplasma infection may manipulate the feeding preference of their insect host and helps fill the gaps in understanding the ecology and diversification of the tripartite association.
Collapse
Affiliation(s)
- Ava M. Gabrys
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Christopher H. Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA;
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA;
| |
Collapse
|
2
|
Pardo JM, Chittarath K, Vongphachanh P, Hang LT, Oeurn S, Arinaitwe W, Rodriguez R, Sophearith S, Malik AI, Cuellar WJ. Cassava Witches' Broom Disease in Southeast Asia: A Review of Its Distribution and Associated Symptoms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112217. [PMID: 37299196 DOI: 10.3390/plants12112217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Cassava witches' broom disease (CWBD) is one of the main diseases of cassava in Southeast Asia (SEA). Affected cassava plants show reduced internodal length and proliferation of leaves (phyllody) in the middle and top part of the plant, which results in reduced root yields of 50% or more. It is thought to be caused by phytoplasma; however, despite its widespread distribution in SEA still little is known about CWBD pathology. The overarching goal of this study was to review and corroborate published information on CWBD biology and epidemiology considering recent field observations. We report the following: (1) CWBD symptoms are conserved and persistent in SEA and are distinct from what has been reported as witches' broom in Argentina and Brazil. (2) In comparison with cassava mosaic disease, another major disease of cassava in SEA, symptoms of CWBD develop later. (3) Phytoplasma detected in CWBD-affected plants belong to different ribosomal groups and there is no association study available indicating phytoplasma as the causing agent of CWBD. These findings are essential clues for designing surveillance and management strategies and for future studies to better understand the biology, tissue localization and spatial spread of CWBD in SEA and other potential risk areas.
Collapse
Affiliation(s)
- Juan M Pardo
- Cassava Program, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Khonesavanh Chittarath
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Pinkham Vongphachanh
- Plant Protection Center (PPC), Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Le Thi Hang
- Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi 100000, Vietnam
| | - Samoul Oeurn
- Plant Protection Sanitary and Phytosanitary Department, General Directorate of Agriculture (GDA), Phnom Penh 120406, Cambodia
| | - Warren Arinaitwe
- Cassava Program Asia Office, International Center for Tropical Agriculture (CIAT), Vientiane P.O. Box 783, Laos
| | - Rafael Rodriguez
- Cassava Program, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Sok Sophearith
- Cassava Program Cambodia Office, International Center for Tropical Agriculture (CIAT), Phnom Penh 120904, Cambodia
| | - Al Imran Malik
- Cassava Program Asia Office, International Center for Tropical Agriculture (CIAT), Vientiane P.O. Box 783, Laos
| | - Wilmer J Cuellar
- Cassava Program, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| |
Collapse
|
3
|
Janik K, Panassiti B, Kerschbamer C, Burmeister J, Trivellone V. Phylogenetic Triage and Risk Assessment: How to Predict Emerging Phytoplasma Diseases. BIOLOGY 2023; 12:biology12050732. [PMID: 37237544 DOI: 10.3390/biology12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Phytoplasma diseases pose a substantial threat to diverse crops of agricultural importance. Management measures are usually implemented only after the disease has already occurred. Early detection of such phytopathogens, prior to disease outbreak, has rarely been attempted, but would be highly beneficial for phytosanitary risk assessment, disease prevention and mitigation. In this study, we present the implementation of a recently proposed proactive disease management protocol (DAMA: Document, Assess, Monitor, Act) for a group of vector-borne phytopathogens. We used insect samples collected during a recent biomonitoring program in southern Germany to screen for the presence of phytoplasmas. Insects were collected with malaise traps in different agricultural settings. DNA was extracted from these mass trap samples and subjected to PCR-based phytoplasma detection and mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding. Phytoplasma DNA was detected in two out of the 152 insect samples analyzed. Phytoplasma identification was performed using iPhyClassifier based on 16S rRNA gene sequence and the detected phytoplasmas were assigned to 'Candidatus Phytoplasma asteris'-related strains. Insect species in the sample were identified by DNA metabarcoding. By using established databases, checklists, and archives, we documented historical associations and records of phytoplasmas and its hosts in the study region. For the assessment in the DAMA protocol, phylogenetic triage was performed in order to determine the risk for tri-trophic interactions (plant-insect-phytoplasma) and associated disease outbreaks in the study region. A phylogenetic heat map constitutes the basis for risk assessment and was used here to identify a minimum number of seven leafhopper species suggested to be monitored by stakeholders in this region. A proactive stance in monitoring changing patterns of association between hosts and pathogens can be a cornerstone in capabilities to prevent future phytoplasma disease outbreaks. To the best of our knowledge, this is the first time that the DAMA protocol has been applied in the field of phytopathology and vector-borne plant diseases.
Collapse
Affiliation(s)
- Katrin Janik
- Laimburg Research Centre, Functional Genomics, Laimburg 6-Pfatten (Vadena), 39040 Auer, South Tyrol, Italy
| | | | - Christine Kerschbamer
- Laimburg Research Centre, Functional Genomics, Laimburg 6-Pfatten (Vadena), 39040 Auer, South Tyrol, Italy
| | - Johannes Burmeister
- Institute for Organic Farming, Soil and Resource Management, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
4
|
Inaba J, Shao J, Trivellone V, Zhao Y, Dietrich CH, Bottner-Parker KD, Ivanauskas A, Wei W. Guilt by Association: DNA Barcoding-Based Identification of Potential Plant Hosts of Phytoplasmas from Their Insect Carriers. PHYTOPATHOLOGY 2023; 113:413-422. [PMID: 36287619 DOI: 10.1094/phyto-09-22-0323-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phytoplasmas are small phloem-restricted and insect-transmissible bacteria that infect many plant species, including important crops and ornamental plants, causing severe economic losses. Our previous studies screened phytoplasmas in hundreds of leafhoppers collected from natural habitats worldwide and identified multiple genetically different phytoplasmas in seven leafhopper species (potential insect vectors). As an initial step toward determining the impact of these phytoplasmas on the ecosystem, ribulose 1,5-biphosphate carboxylase large subunit (rbcL), a commonly used plant DNA barcoding marker, was employed to identify the plant species that the phytoplasma-harboring leafhoppers feed on. The DNA of 17 individual leafhoppers was PCR amplified using universal rbcL primers. PCR products were cloned, and five clones per amplicon were randomly chosen for Sanger sequencing. Moreover, Illumina high-throughput sequencing on selected PCR products was conducted and confirmed no missing targets in Sanger sequencing. The nucleotide BLAST results revealed 14 plant species, including six well-known plant hosts of phytoplasmas such as tomato, alfalfa, and maize. The remaining species have not been documented as phytoplasma hosts, expanding our knowledge of potential plant hosts. Notably, the DNA of tomato and maize (apparently cultivated in well-managed croplands) was detected in some phytoplasma-harboring leafhopper species sampled in non-crop lands, suggesting the spillover/spillback risk of phytoplasma strains between crop and non-crop areas. Furthermore, our results indicate that barcoding (or metabarcoding) is a valuable tool to study the three-way interactions among phytoplasmas, plant hosts, and vectors. The findings contribute to a better understanding of phytoplasma host range, host shift, and disease epidemiology.
Collapse
Affiliation(s)
- Junichi Inaba
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Jonathan Shao
- Statistics Group, NEA Bioinformatics, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820
| | - Yan Zhao
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820
| | - Kristi D Bottner-Parker
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Algirdas Ivanauskas
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Wei Wei
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
5
|
Wheatley MS, Wang Q, Wei W, Bottner-Parker KD, Zhao Y, Yang Y. Cas12a-Based Diagnostics for Potato Purple Top Disease Complex Associated with Infection by ' Candidatus Phytoplasma trifolii'-Related Strains. PLANT DISEASE 2022; 106:2039-2045. [PMID: 35350901 DOI: 10.1094/pdis-09-21-2119-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
'Candidatus Phytoplasma trifolii' is a cell wall-less phytopathogenic bacterium that infects many agriculturally important plant species such as alfalfa, clover, eggplant, pepper, potato, and tomato. The phytoplasma is responsible for repeated outbreaks of potato purple top (PPT) and potato witches' broom (PWB) that occurred along the Pacific Coast of the United States since 2002, inflicting significant economic losses. To effectively manage these phytoplasmal diseases, it is important to develop diagnostic tools for specific, sensitive, and rapid detection of the pathogens. Here we report the development of a DNA endonuclease targeted CRISPR trans reporter (DETECTR) assay that couples isothermal amplification and Cas12a transcleavage of fluorescent oligonucleotide reporter for highly sensitive and specific detection of 'Candidatus Phytoplasma trifolii'-related strains responsible for PPT and PWB. The DETECTR assay was capable of specifically detecting the 16S-23S ribosomal DNA intergenic transcribed spacer sequences from PPT- and PWB-diseased samples at the attomolar sensitivity level. Furthermore, the DETECTR strategy allows flexibility to capture assay outputs with fluorescent microplate readers or lateral flow assays for potentially high-throughput and/or field-deployable disease diagnostics.
Collapse
Affiliation(s)
- Matthew S Wheatley
- Department of Plant Pathology and Environmental Microbiology, Huck Institute of the Life Sciences, the Pennsylvania State University, University Park, PA 16802
| | - Qin Wang
- Department of Plant Pathology and Environmental Microbiology, Huck Institute of the Life Sciences, the Pennsylvania State University, University Park, PA 16802
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD 20705
| | - Kristi D Bottner-Parker
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD 20705
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD 20705
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, Huck Institute of the Life Sciences, the Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
6
|
Comparison of Traditional and Next-Generation Approaches for Uncovering Phytoplasma Diversity, with Discovery of New Groups, Subgroups and Potential Vectors. BIOLOGY 2022; 11:biology11070977. [PMID: 36101358 PMCID: PMC9312118 DOI: 10.3390/biology11070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Phytoplasmas are bacteria transmitted by insects that cause severe diseases in many plants, including crops, worldwide. Most phytoplasma research focuses on the epidemiology of phytoplasma-associated diseases in agriculture, and relatively few efforts have been made to survey phytoplasma diversity in natural areas. We compared traditional methods for detecting and identifying phytoplasmas with a new method based on next-generation DNA sequencing and found that the next-generation method performs as well, or better, for identifying phytoplasmas in DNA extracted from plant-feeding insects. Using this method, we report several new country/region records and insect associations for known phytoplasmas, three new designated phytoplasma subgroups and three possible new groups. Abstract Despite several decades’ effort to detect and identify phytoplasmas (Mollicutes) using PCR and Sanger sequencing focusing on diseased plants, knowledge of phytoplasma biodiversity and vector associations remains highly incomplete. To improve protocols for documenting phytoplasma diversity and ecology, we used DNA extracted from phloem-feeding insects and compared traditional Sanger sequencing with a next-generation sequencing method, Anchored Hybrid Enrichment (AHE) for detecting and characterizing phytoplasmas. Among 22 of 180 leafhopper samples that initially tested positive for phytoplasmas using qPCR, AHE yielded phytoplasma 16Sr sequences for 20 (19 complete and 1 partial sequence) while Sanger sequencing yielded sequences for 16 (11 complete and 5 partial). AHE yielded phytoplasma sequences for an additional 7 samples (3 complete and 4 partial) that did not meet the qPCR threshold for phytoplasma positivity or yielded non-phytoplasma sequences using Sanger sequencing. This suggests that AHE is more efficient for obtaining phytoplasma sequences. Twenty-three samples with sufficient data were classified into eight 16Sr subgroups (16SrI-B, I-F, I-AO, III-U, V-C, IX-J, XI-C, XXXVII-A), three new subgroups (designated as 16SrVI-L, XV-D, XI-G) and three possible new groups. Our results suggest that screening phloem-feeding insects using qPCR and AHE sequencing may be the most efficient method for discovering new phytoplasmas.
Collapse
|
7
|
Molecular Identification and Characterization of Two Groups of Phytoplasma and Candidatus Liberibacter Asiaticus in Single or Mixed Infection of Citrus maxima on Hainan Island of China. BIOLOGY 2022; 11:biology11060869. [PMID: 35741390 PMCID: PMC9220215 DOI: 10.3390/biology11060869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Based on the 16S rRNA and β-operon gene fragments, two subgroups of phytoplasma—CmPII-hn belonging to 16SrII-V and CmPXXXII-hn belonging to 16SrXXXII-D—and Candidatus Liberibacter asiaticus CmLas-hn were detected separately in 12, 2 and 6 out of 54 citrus samples of Citrus maxima, an important economic crop in Hainan Island, China, infected with Huanglongbing. Among the detection results, mixed infection of 16SrII-V subgroup phytoplasma and Candidatus Liberibacter asiaticus was identified in four samples, accounting for 7.4%. The CmPII-hn strain was in a cluster belonging to the 16SrII-V subgroup, with a 99% bootstrap value. The CmPXXXII-hn strain, Trema tomentosa witches’ broom phytoplasma, belonging to 16SrXXXII-D, and the other 16SrXXXII subgroup strains were in one cluster with a 99% bootstrap value. Sixteen variable loci were detected in the 16S rRNA genes of the tested 16SrXXXII group phytoplasma strains, of which two bases had an insertion/deletion. The CmLas-hn strain and Candidatus Liberibacter asiaticus were in one independent cluster with a 99% bootstrap value. In the study, Citrus maxima, showing yellowing and mottled leaves as disease symptoms, were found, which could have been infected separately by 16SrII-V and 16SrXXXII-D subgroup phytoplasmas or could have been subjected to mixed infection by 16SrII-V phytoplasmas and Candidatus Liberibacter asiaticus in China. Abstract The pathogens associated with citrus Huanglongbing symptoms, including yellowing and mottled leaves in Citrus maxima, an important economic crop on Hainan Island of China, were identified and characterized. In the study, detection, genetic variation and phylogenetic relationship analysis of the pathogens were performed based on 16S rRNA and β-operon gene fragments specific to phytoplasma and Candidatus Liberibacter asiaticus. The results indicated that the pathogens—such as phytoplasma strains of CmPII-hn belonging to the 16SrII-V subgroup and CmPXXXII-hn belonging to the 16SrXXXII-D subgroup, as well as Candidatus Liberibacter asiaticus strains CmLas-hn—were identified in the diseased plant samples, with numbers of 12, 2 and 6 out of 54, respectively. Among them, mixed infection with the 16SrII-V subgroup phytoplasma and Candidatus Liberibacter asiaticus was found in the study, accounting for 7.4% (four samples). The phytoplasma strains of CmPII-hn—Tephrosia purpurea witches’ broom, Melochia corchorifolia witches’ broom and Emilia sonchifolia witches’ broom—were clustered into one clade belonging to the 16SrII-V subgroup, with a 99% bootstrap value. The phytoplasma strains of CmPXXXII-hn and Trema tomentosa witches’ broom belonging to 16SrXXXII-D, and the other 16SrXXXII subgroup strains were clustered into one clade belonging to the 16SrXXXII group with a 99% bootstrap value. There were 16 variable loci in the 16S rRNA gene sequences of the tested 16SrXXXII group phytoplasma strains, of which two bases had an insertion/deletion. The strains of Candidatus Liberibacter asiaticus, identified in the study and the strains that had been deposited in GenBank, were in one independent cluster with a 99% bootstrap value. To our knowledge, this is the first report showing that Citrus maxima can be infected by 16SrII-V and16SrXXXII-D subgroup phytoplasmas in China. Moreover, this is also the first report in which the plants are co-infected by 16SrII-V subgroup phytoplasmas and Candidatus Liberibacter asiaticus. More comprehensive and detailed identification and characterization of the pathogens associated with the diseased symptoms in Citrus maxima on the island in China would be beneficial for epidemic monitoring and for the effective prevention and control of related plant diseases.
Collapse
|
8
|
Trivellone V, Wei W, Filippin L, Dietrich CH. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol Evol 2021; 11:6493-6503. [PMID: 34141234 PMCID: PMC8207438 DOI: 10.1002/ece3.7502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas (Mollicutes, Acholeplasmataceae), vector-borne obligate bacterial plant parasites, infect nearly 1,000 plant species and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and epidemiology. Although the plant-phytoplasma-insect association has been evolving for >300 million years, nearly all known phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been made to study phytoplasmas occurring in noneconomically important plants in natural habitats. In this study, a subsample of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR screening for phytoplasmas performed on 227 phloem-feeding leafhoppers collected worldwide from natural habitats revealed the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epidemiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger-scale future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect-borne phytoplasma transmission and provide an early warning for the emergence of new phytoplasma diseases across global agroecosystems.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| | - Wei Wei
- Molecular Plant Pathology LaboratoryBeltsville Agricultural Research CenterAgricultural Research ServiceUnited States Department of AgricultureBeltsvilleMDUSA
| | - Luisa Filippin
- CREA–VECouncil for Agricultural Research and EconomicsResearch Centre for Viticulture and EnologyConegliano, TrevisoItaly
| | - Christopher H. Dietrich
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| |
Collapse
|