1
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
2
|
Narasimha RB, Shreya S, Jayabal VA, Yadav V, Rath PK, Mishra BP, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK, Jena MK. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet Sci 2025; 12:67. [PMID: 39852942 PMCID: PMC11768649 DOI: 10.3390/vetsci12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases. Although there are substantial studies revealing the treatment of human degenerative diseases using stem cells, this is yet to be explored in livestock animals. Many diseases in livestock species such as mastitis, laminitis, neuromuscular disorders, autoimmune diseases, and some debilitating diseases are not covered completely by the existing drugs and treatment can be improved by using different types of stem cells like embryonic stem cells, adult stem cells, and induced pluripotent stem cells. This review mainly focuses on the use of stem cells for disease treatment in livestock animals. In addition to the diseases mentioned, the potential of stem cells can be helpful in wound healing, skin disease therapy, and treatment of some genetic disorders. This article explores the potential of stem cells from various sources in the therapy of livestock diseases and also their role in the conservation of endangered species as well as disease model preparation. Moreover, the future perspectives and challenges associated with the application of stem cells in livestock are discussed. Overall, the transformative impact of stem cell research on the livestock sector is comprehensively studied which will help researchers to design future research work on stem cells related to livestock diseases.
Collapse
Affiliation(s)
- Raghavendra B. Narasimha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Singireddy Shreya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Vijay Anand Jayabal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213 Malmö, Sweden
| | - Prasana Kumar Rath
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Bidyut Prava Mishra
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, Haryana, India;
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut 250001, Uttar Pradesh, India;
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| |
Collapse
|
3
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
4
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
5
|
Pavlovic D, Miloradovic D, Stojanovic MD, Harrell CR, Polosa R, Rust S, Volti GL, Caruso M, Jakovljevic V, Djonov V, Volarevic V. Cigarette smoke attenuates mesenchymal stem cell-based suppression of immune cell-driven acute liver failure. Toxicol Lett 2023; 385:12-20. [PMID: 37572970 DOI: 10.1016/j.toxlet.2023.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Detrimental effects of smoking on mesenchymal stem cell (MSC)-dependent immunosuppression and hepatoprotection are unknown. Herewith, by using α-galactosylceramide (α-GalCer)-induced liver injury, a well-established murine model of fulminant hepatitis, we examined molecular mechanisms which were responsible for negative effects of cigarette smoke on MSC-dependent immunomodulation. MSC which were grown in cigarette smoke-exposed medium (MSCWS-CM) obtained pro-inflammatory phenotype, were not able to optimally produce hepatoprotective and immunosuppressive cytokines (TGF-β, HGF, IL-10, NO, KYN), and secreted significantly higher amounts of inflammatory cytokines (IFN-γ, TNF-α, IL-17, IL-6) than MSC that were cultured in standard medium never exposed to cigarette smoke (MSCCM). In contrast to MSCCM, which efficiently attenuated α-GalCer-induced hepatitis, MSCWS-CM were not able to prevent hepatocyte injury and liver inflammation. MSCWS-CM had reduced capacity for the suppression of liver-infiltrated inflammatory macrophages, dendritic cells (DCs) and lymphocytes. Although significantly lower number of IL-12-producing macrophages and DCs, TNF-α, IFN-γ or IL-17-producing CD4 + and CD8 +T lymphocytes, NK and NKT cells were noticed in the livers of α-GalCer+MSCCM-treated mice compared to α-GalCer+saline-treated animals, this phenomenon was not observed in α-GalCer-injured mice that received MSCWS-CM. MSCWS-CM could not induce expansion of anti-inflammatory IL-10-producing FoxP3 +CD4 + and CD8 + T regulatory cells and were not able to create immunosuppressive microenvironment in the liver as MSCCM. Similarly as it was observed in mice, MSCWS-CM were not able to optimally inhibit production of inflammatory and hepatototoxic cytokines in activated human Th1/Th17 and NKT1/NKT17 cells, confirming the hypothesis that cigarette smoke significantly attenuates therapeutic potential of MSC in cell-based immunotherapy of inflammatory liver diseases.
Collapse
Affiliation(s)
- Dragica Pavlovic
- Department of Genetics, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Dragana Miloradovic
- Department of Genetics, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Sonja Rust
- ECLAT Srl, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Giovanni Li Volti
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Massimo Caruso
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Vladislav Volarevic
- Department of Genetics, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; Departments of Genetics and Department of Microbiology and Immunology, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences University of Kragujevac, Serbia.
| |
Collapse
|
6
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Muzsai S, Maryanovsky OM, Ander R, Koncz G, Mázló A, Bácsi A, Tóth M. Cell-Free Supernatant Derived from a Lactobacillus casei BL23 Culture Modifies the Antiviral and Immunomodulatory Capacity of Mesenchymal Stromal Cells. Biomedicines 2023; 11:1521. [PMID: 37371616 DOI: 10.3390/biomedicines11061521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Immune responses are highly complex and intricately regulated processes involving immune and non-immune cells in close direct and indirect contact with each other. These cells are highly sensitive to environmental signals, including factors derived from microbiota. Here, we demonstrate that the human microbiota member Lactobacillus casei (L. casei)-derived cell-free supernatant (CFS) enhances the sensitivity of mesenchymal-stromal-cell-like (MSCI) cells to viral stimuli and induces the development of dendritic cells (DCs) with anti-inflammatory and antiviral properties via pretreated MSCl cells. Our results showed that the production of INFβ and CXCL10 by MSCl cells upon viral stimulation was dependent on the presence of L. casei-derived extracellular vesicles in CFS during pretreatment. Moreover, L. casei CFS and/or poly (I:C)-conditioned MSCI cells altered the differentiation process of freshly isolated monocytes, as well as the developing DCs' phenotype and functional activities, such as cytokine and chemokine secretion. Taken together, L. casei CFS contains factors which contribute to the pronounced antiviral response of MSCI cells, avoiding the development of inflammation via the induction of differentiation of anti-inflammatory DCs that retain their antiviral properties.
Collapse
Affiliation(s)
- Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Ore-Matan Maryanovsky
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Roland Ander
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Gudauskaitė G, Kairienė I, Ivaškienė T, Rascon J, Mobasheri A. Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:111-126. [PMID: 35995905 DOI: 10.1007/5584_2022_726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.
Collapse
Affiliation(s)
- Greta Gudauskaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ignė Kairienė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ali Mobasheri
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
9
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Villatoro AJ, Martín-Astorga MDC, Alcoholado C, Kazantseva L, Cárdenas C, Fariñas F, Becerra J, Visser R. Secretory Profile of Adipose-Tissue-Derived Mesenchymal Stem Cells from Cats with Calicivirus-Positive Severe Chronic Gingivostomatitis. Viruses 2022; 14:v14061146. [PMID: 35746618 PMCID: PMC9228153 DOI: 10.3390/v14061146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
The feline calicivirus (FCV) causes infections in cats all over the world and seems to be related to a broad variety of clinical presentations, such as feline chronic gingivostomatitis (FCGS), a severe oral pathology in cats. Although its etiopathogeny is largely unknown, FCV infection is likely to be a main predisposing factor for developing this pathology. During recent years, new strategies for treating FCGS have been proposed, based on the use of mesenchymal stem cells (MSC) and their regenerative and immunomodulatory properties. The main mechanism of action of MSC seems to be paracrine, due to the secretion of many biomolecules with different biological functions (secretome). Currently, several pathologies in humans have been shown to be related to functional alterations of the patient’s MSCs. However, the possible roles that altered MSCs might have in different diseases, including virus-mediated diseases, remain unknown. We have recently demonstrated that the exosomes produced by the adipose-tissue-derived MSCs (fAd-MSCs) from cats suffering from FCV-positive severe and refractory FCGS showed altered protein contents. Based on these findings, the goal of this work was to analyze the proteomic profile of the secretome produced by feline adipose-tissue-derived MSCs (fAd-MSCs) from FCV-positive patients with FCGS, in order to identify differences between them and to increase our knowledge of the etiopathogenesis of this disease. We used high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology to compare the secretomes produced by the fAd-MSCs of healthy and calicivirus-positive FCGS cats. We found that the fAd-MSCs from cats with FCGS had an increased expression of pro-inflammatory cytokines and an altered proteomic profile compared to the secretome produced by cells from healthy cats. These findings help us gain insight on the roles of MSCs and their possible relation to FCGS, and may be useful for selecting specific biomarkers and for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Antonio J. Villatoro
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
- Grupo Ynmun, Inmunología Clínica y Terapia Celular (IMMUNESTEM), 29071 Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
| | - Liliya Kazantseva
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
| | - Casimiro Cárdenas
- Research Support Central Services (SCAI) of the University of Málaga, 29071 Málaga, Spain;
| | - Fernando Fariñas
- Grupo Ynmun, Spanish Association for the Research in Immunological and Infectious Diseases, 29071 Málaga, Spain;
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rick Visser
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-952-131-858
| |
Collapse
|
11
|
Deo D, Marchioni M, Rao P. Mesenchymal Stem/Stromal Cells in Organ Transplantation. Pharmaceutics 2022; 14:pharmaceutics14040791. [PMID: 35456625 PMCID: PMC9029865 DOI: 10.3390/pharmaceutics14040791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Organ transplantation is essential and crucial for saving and enhancing the lives of individuals suffering from end-stage organ failure. Major challenges in the medical field include the shortage of organ donors, high rates of organ rejection, and long wait times. To address the current limitations and shortcomings, cellular therapy approaches have been developed using mesenchymal stem/stromal cells (MSC). MSC have been isolated from various sources, have the ability to differentiate to important cell lineages, have anti-inflammatory and immunomodulatory properties, allow immunosuppressive drug minimization, and induce immune tolerance towards the transplanted organ. Additionally, rapid advances in the fields of tissue engineering and regenerative medicine have emerged that focus on either generating new organs and organ sources or maximizing the availability of existing organs. This review gives an overview of the various properties of MSC that have enabled its use as a cellular therapy for organ preservation and transplant. We also highlight emerging fields of tissue engineering and regenerative medicine along with their multiple sub-disciplines, underlining recent advances, widespread clinical applications, and potential impact on the future of tissue and organ transplantation.
Collapse
|