1
|
Grossman AS, Gell DA, Wu DG, Carper DL, Hettich RL, Goodrich-Blair H. Bacterial hemophilin homologs and their specific type eleven secretor proteins have conserved roles in heme capture and are diversifying as a family. J Bacteriol 2024; 206:e0044423. [PMID: 38506530 PMCID: PMC11332152 DOI: 10.1128/jb.00444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Derek G. Wu
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Dana L. Carper
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Fulte S, Atto B, McCarty A, Horn KJ, Redzic JS, Eisenmesser E, Yang M, Marsh RL, Tristram S, Clark SE. Heme sequestration by hemophilin from Haemophilus haemolyticus reduces respiratory tract colonization and infection with non-typeable Haemophilus influenzae. mSphere 2024; 9:e0000624. [PMID: 38380941 PMCID: PMC10964412 DOI: 10.1128/msphere.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.
Collapse
Affiliation(s)
- Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Arianna McCarty
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kadi J. Horn
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Sarah E. Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
4
|
Atto B, Gell D, Tristram S. Exploiting the struggle for haem: a novel therapeutic approach against Haemophilus influenzae. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, nontypeable Haemophilus influenzae (NTHi) has gained recognition as a major opportunistic pathogen of the respiratory tract that imposes a substantial global burden of disease, owing to a high rate of morbidity and ensuing complications. Further amplifying the global impact of NTHi infections is the increasing spectrum and prevalence of antibiotic resistance, leading to higher rates of treatment failure with first- and second-line antibiotics regimes. The threat of antibiotic resistance was recognised by the World Health Organization in 2017, listing NTHi as a priority pathogen for which new therapies are urgently needed. Despite significant efforts, there are currently no effective vaccine strategies available that can slow the growing burden of NTHi disease. Consequently, alternative preventative or therapeutic approaches that do not rely on antibiotic susceptibility or stable vaccine targets are becoming more attractive. The nutritional dependency for haem at all stages of NTHi pathogenesis exposes a vulnerability that may be exploited for the development of such therapies. This article will discuss the therapeutic potential of strategies that limit NTHi access to this vital nutrient, with particular focus on a novel bacteriotherapeutic approach under development.
Collapse
|