1
|
Martinez-Sobrido L, DeDiego ML. Editorial for the Topical Collection "SARS-CoV-2 Infection and COVID-19 Disease". Pathogens 2024; 13:191. [PMID: 38535534 PMCID: PMC10976236 DOI: 10.3390/pathogens13030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/11/2025] Open
Abstract
A previously unknown coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in the city of Wuhan, China, in December 2019 [...].
Collapse
Affiliation(s)
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
2
|
Tossavainen T, Martikainen MV, Loukola H, Roponen M. Common Pollen Modulate Immune Responses against Viral-Like Challenges in Airway Coculture Model. J Immunol Res 2023; 2023:6639092. [PMID: 37965270 PMCID: PMC10643028 DOI: 10.1155/2023/6639092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Recent research indicates that exposure to pollen increases the risk and severity of respiratory infections, while studies also suggest that it may possess a protective function. Our aim was to investigate how exposure to common pollen modifies airway cells' responses to viral- or bacterial-like challenges and vice versa. Cocultured A549 and THP-1 cells were exposed to three doses of four different pollens (Alnus glutinosa, Betula pendula, Phleum pratense, or Ambrosia artemisiifolia) and subsequently to Toll-like receptor (TLR) ligands mimicking bacterial and viral challenges (TLR3, TLR4, TLR7/8). The stimulation experiment was replicated in reverse order. Toxicological and immunological end points were analyzed. When cells were primed with pollen, especially with grass (P. pratense) or weed (A. artemisiifolia), the ability of cells to secrete cytokines in response to bacterial- and viral-like exposure was decreased. In contrast, cells primed with viral ligand TLR7/8 showed greater cytokine responses against pollen than cells exposed to ligands or pollen alone. Our results suggest that pollen exposure potentially weakens immune reactions to bacterial- or viral-like challenges by modulating cytokine production. They also indicate that TLR7/8-mediated viral challenges could elicit exaggerated immune responses against pollen. Both mechanisms could contribute to the acceleration and complication of infections during the pollen season.
Collapse
Affiliation(s)
- Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna Loukola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Villatoro-García JA, López-Domínguez R, Martorell-Marugán J, Luna JDD, Lorente JA, Carmona-Sáez P. Exploring the interplay between climate, population immunity and SARS-CoV-2 transmission dynamics in Mediterranean countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165487. [PMID: 37451463 DOI: 10.1016/j.scitotenv.2023.165487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The relationship between SARS-CoV-2 transmission and environmental factors has been analyzed in numerous studies since the outbreak of the pandemic, resulting in heterogeneous results and conclusions. This may be due to differences in methodology, considered variables, confounding factors, studied periods and/or lack of adequate data. Furthermore, previous works have reported that the lack of population immunity is the fundamental driver in transmission dynamics and can mask the potential impact of environmental variables. In this study, we aimed to investigate the association between climate variables and COVID-19 transmission considering the influence of population immunity. We analyzed two different periods characterized by the absence of vaccination (low population immunity) and a high degree of vaccination (high level of population immunity), respectively. Although this study has some limitations, such us the restriction to a specific climatic zone and the omission of other environmental factors, our results indicate that transmission of SARS-CoV-2 may increase independently of temperature and specific humidity in periods with low levels of population immunity while a negative association is found under conditions with higher levels of population immunity in the analyzed regions.
Collapse
Affiliation(s)
- Juan Antonio Villatoro-García
- Department of Statistics and Operations Research, University of Granada, Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Raúl López-Domínguez
- Department of Statistics and Operations Research, University of Granada, Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Jordi Martorell-Marugán
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero (FIBAO), Spain
| | - Juan de Dios Luna
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
| | - José Antonio Lorente
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, PTS Granada, 18016 Granada, Spain
| | - Pedro Carmona-Sáez
- Department of Statistics and Operations Research, University of Granada, Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, 18016 Granada, Spain.
| |
Collapse
|
4
|
Idrose NS, Zhang J, Lodge CJ, Erbas B, Douglass JA, Bui DS, Dharmage SC. A Review of the Role of Pollen in COVID-19 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105805. [PMID: 37239533 DOI: 10.3390/ijerph20105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
There is current interest in the role of ambient pollen in the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 or COVID-19) infection risk. The aim of this review is to summarise studies published up until January 2023 investigating the relationship between airborne pollen and the risk of COVID-19 infection. We found conflicting evidence, with some studies showing that pollen may increase the risk of COVID-19 infection by acting as a carrier, while others showed that pollen may reduce the risk by acting as an inhibiting factor. A few studies reported no evidence of an association between pollen and the risk of infection. A major limiting factor of this research is not being able to determine whether pollen contributed to the susceptibility to infection or just the expression of symptoms. Hence, more research is needed to better understand this highly complex relationship. Future investigations should consider individual and sociodemographic factors as potential effect modifiers when investigating these associations. This knowledge will help to identify targeted interventions.
Collapse
Affiliation(s)
- Nur Sabrina Idrose
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Jingwen Zhang
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Jo A Douglass
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Melbourne, VIC 3050, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| |
Collapse
|
5
|
Martikainen MV, Tossavainen T, Hannukka N, Roponen M. Pollen, respiratory viruses, and climate change: Synergistic effects on human health. ENVIRONMENTAL RESEARCH 2023; 219:115149. [PMID: 36566960 DOI: 10.1016/j.envres.2022.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, evidence of the synergistic effects of pollen and viruses on respiratory health has begun to accumulate. Pollen exposure is a known risk factor for the incidence and severity of respiratory viral infections. However, recent evidence suggests that pollen exposure may also inhibit or weaken viral infections. A comprehensive summary has not been made and a consensus on the synergistic health effects has not been reached. It is highly possible that climate change will increase the significance of pollen exposure as a cause of respiratory problems and, at the same time, affect the risk of infectious disease outbreaks. It is important to accurately assess how these two factors affect human health separately and concurrently. In this review article, for the first time, the data from previous studies are combined and reviewed and potential research gaps concerning the synergistic effects of pollen and viral exposure are identified.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Hannukka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Lian XY, Xi L, Zhang ZS, Yang LL, Du J, Cui Y, Li HJ, Zhang WX, Wang C, Liu B, Yang YN, Cui F, Lu QB. Impact of air pollutants on influenza-like illness outpatient visits under COVID-19 pandemic in the subcenter of Beijing, China. J Med Virol 2023; 95:e28514. [PMID: 36661040 DOI: 10.1002/jmv.28514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
This study aimed to explore the association between air pollutants and outpatient visits for influenza-like illnesses (ILI) under the coronavirus disease 2019 (COVID-19) stage in the subcenter of Beijing. The data on ILI in the subcenter of Beijing from January 1, 2018 to December 31, 2020 were obtained from the Beijing Influenza Surveillance Network. A generalized additive Poisson model was applied to examine the associations between the concentrations of air pollutants and daily outpatient visits for ILI when controlling meteorological factors and temporal trend. A total of 171 943 ILI patients were included. In the pre-coronavirus disease 2019 (COVID-19) stage, an increased risk of ILI outpatient visits was associated to a high air quality index (AQI) and the high concentrations of particulate matter less than 2.5 (PM2.5 ), particulate matter 10 (PM10 ), sulphur dioxide (SO2 ), nitrogen dioxide (NO2 ), and carbon monoxide (CO), and a low concentration of ozone (O3 ) on lag0 day and lag1 day, while a higher increased risk of ILI outpatient visits was observed by the air pollutants in the COVID-19 stage on lag0 day. Except for PM10 , the concentrations of other air pollutants on lag1 day were not significantly associated with an increased risk of ILI outpatient visits during the COVID-19 stage. The findings that air pollutants had enhanced immediate effects and diminished lag-effects on the risk of ILI outpatient visits during the COVID-19 pandemic, which is important for the development of public health and environmental governance strategies.
Collapse
Affiliation(s)
- Xin Yao Lian
- Department of Laboratorial Science and Technology, Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Lu Xi
- Beijing Tongzhou Center for Diseases Prevention and Control, Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing, People's Republic of China
| | - Zhong Song Zhang
- Department of Laboratorial Science and Technology, Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Li Li Yang
- Beijing Tongzhou Center for Diseases Prevention and Control, Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing, People's Republic of China
| | - Juan Du
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, People's Republic of China
| | - Yan Cui
- Beijing Tongzhou Center for Diseases Prevention and Control, Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing, People's Republic of China
| | - Hong Jun Li
- Beijing Tongzhou Center for Diseases Prevention and Control, Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing, People's Republic of China
| | - Wan Xue Zhang
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, People's Republic of China
| | - Chao Wang
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, People's Republic of China
| | - Bei Liu
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, People's Republic of China
| | - Yan Na Yang
- Center for Disease Control and Prevention of Beijing Economic and Technological Development Area, Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing, People's Republic of China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, People's Republic of China
| | - Qing Bin Lu
- Department of Laboratorial Science and Technology, Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Song P, Han H, Feng H, Hui Y, Zhou T, Meng W, Yan J, Li J, Fang Y, Liu P, Li X, Li X. High altitude Relieves transmission risks of COVID-19 through meteorological and environmental factors: Evidence from China. ENVIRONMENTAL RESEARCH 2022; 212:113214. [PMID: 35405128 PMCID: PMC8993487 DOI: 10.1016/j.envres.2022.113214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
Existing studies reported higher altitudes reduce the COVID-19 infection rate in the United States, Colombia, and Peru. However, the underlying reasons for this phenomenon remain unclear. In this study, regression analysis and mediating effect model were used in a combination to explore the altitudes relation with the pattern of transmission under their correlation factors. The preliminary linear regression analysis indicated a negative correlation between altitudes and COVID-19 infection in China. In contrast to environmental factors from low-altitude regions (<1500 m), high-altitude regions (>1500 m) exhibited lower PM2.5, average temperature (AT), and mobility, accompanied by high SO2 and absolute humidity (AH). Non-linear regression analysis further revealed that COVID-19 confirmed cases had a positive correlation with mobility, AH, and AT, whereas negatively correlated with SO2, CO, and DTR. Subsequent mediating effect model with altitude-correlated factors, such as mobility, AT, AH, DTR and SO2, suffice to discriminate the COVID-19 infection rate between low- and high-altitude regions. The mentioned evidence advance our understanding of the altitude-mediated COVID-19 transmission mechanism.
Collapse
Affiliation(s)
- Peizhi Song
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Huawen Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Hanzhong Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Yun Hui
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Tuoyu Zhou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Wenbo Meng
- Key Laboratory for Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, PR China
| | - Jun Yan
- Key Laboratory for Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, PR China
| | - Junfeng Li
- Key Laboratory for Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, PR China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pu Liu
- Key Laboratory for Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, PR China
| | - Xun Li
- Key Laboratory for Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, PR China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
8
|
Hoogeveen MJ, Kroes ACM, Hoogeveen EK. Environmental factors and mobility predict COVID-19 seasonality in the Netherlands. ENVIRONMENTAL RESEARCH 2022; 211:113030. [PMID: 35257688 PMCID: PMC8895708 DOI: 10.1016/j.envres.2022.113030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. We hypothesize that in The Netherlands the same environmental factors and mobility trends that are associated with the seasonality of flu-like illnesses are predictors of COVID-19 seasonality as well. METHODS We used meteorological, pollen/hay fever and mobility data from the Netherlands. For the reproduction number of COVID-19 (Rt), we used daily estimates from the Dutch State Institute for Public Health. For all datasets, we selected the overlapping period of COVID-19 and the first allergy season: from February 17, 2020 till September 21, 2020 (n = 218). Backward stepwise multiple linear regression was used to develop an environmental prediction model of the Rt of COVID-19. Next, we studied whether adding mobility trends to an environmental model improved the predictive power. RESULTS Through stepwise backward multiple linear regression four highly significant (p < 0.01) predictive factors are selected in our combined model: temperature, solar radiation, hay fever incidence, and mobility to indoor recreation locations. Our combined model explains 87.5% of the variance of Rt of COVID-19 and has a good and highly significant fit: F(4, 213) = 374.2, p < 0.00001. This model had a better overall predictive performance than a solely environmental model, which explains 77.3% of the variance of Rt (F(4, 213) = 181.3, p < 0.00001). CONCLUSIONS We conclude that the combined mobility and environmental model can adequately predict the seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In this model higher solar radiation, higher temperature and hay fever are related to lower COVID-19 reproduction, and higher mobility to indoor recreation locations is related to an increased COVID-19 spread.
Collapse
Affiliation(s)
- Martijn J Hoogeveen
- Department Technical Sciences & Environment, Open University, the Netherlands.
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen K Hoogeveen
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, the Netherlands
| |
Collapse
|
9
|
Estimate of benefit attributable to wearing masks in Chicago during the early days of the pandemic. Med Hypotheses 2021; 156:110678. [PMID: 34560517 PMCID: PMC8436426 DOI: 10.1016/j.mehy.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
|