1
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
2
|
Goldswain H, Penrice-Randal R, Donovan-Banfield I, Duffy CW, Dong X, Randle N, Ryan Y, Rzeszutek AM, Pilgrim J, Keyser E, Weller SA, Hutley EJ, Hartley C, Prince T, Darby AC, Aye Maung N, Nwume H, Hiscox JA, Emmett SR. SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection. Genome Med 2024; 16:89. [PMID: 39014481 PMCID: PMC11251137 DOI: 10.1186/s13073-024-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND SARS-CoV-2 remains rapidly evolving, and many biologically important genomic substitutions/indels have characterised novel SARS-CoV-2 lineages, which have emerged during successive global waves of the pandemic. Worldwide genomic sequencing has been able to monitor these waves, track transmission clusters, and examine viral evolution in real time to help inform healthcare policy. One school of thought is that an apparent greater than average divergence in an emerging lineage from contemporary variants may require persistent infection, for example in an immunocompromised host. Due to the nature of the COVID-19 pandemic and sampling, there were few studies that examined the evolutionary trajectory of SARS-CoV-2 in healthy individuals. METHODS We investigated viral evolutionary trends and participant symptomatology within a cluster of 16 SARS-CoV-2 infected, immunocompetent individuals with no co-morbidities in a closed transmission chain. Longitudinal nasopharyngeal swab sampling allowed characterisation of SARS-CoV-2 intra-host variation over time at both the dominant and minor genomic variant levels through Nimagen-Illumina sequencing. RESULTS A change in viral lineage assignment was observed in individual infections; however, there was only one indel and no evidence of recombination over the period of an acute infection. Minor and dominant genomic modifications varied between participants, with some minor genomic modifications increasing in abundance to become the dominant viral sequence during infection. CONCLUSIONS Data from this cohort of SARS-CoV-2-infected participants demonstrated that long-term persistent infection in an immunocompromised host was not necessarily a prerequisite for generating a greater than average frequency of amino acid substitutions. Amino acid substitutions at both the dominant and minor genomic sequence level were observed in immunocompetent individuals during infection showing that viral lineage changes can occur generating viral diversity.
Collapse
Affiliation(s)
- Hannah Goldswain
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Craig W Duffy
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Xiaofeng Dong
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | | | - Jack Pilgrim
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 3BX, UK
| | - Emma Keyser
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Simon A Weller
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Emma J Hutley
- Centre for Defence Pathology, Royal Centre for Defence Medicine, OCT Centre, Birmingham, B15 2WB, UK
| | - Catherine Hartley
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Alistair C Darby
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Niall Aye Maung
- British Army, Hunter House, St Omer Barracks, Aldershot, Hampshire, GU11 2BG, UK
| | - Henry Nwume
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Julian A Hiscox
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK.
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Connexis North Tower, 1 Fusionopolis Way, Singapore, #20-10138632, Singapore.
| | - Stevan R Emmett
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| |
Collapse
|
3
|
Maiti AK. Progressive Evolutionary Dynamics of Gene-Specific ω Led to the Emergence of Novel SARS-CoV-2 Strains Having Super-Infectivity and Virulence with Vaccine Neutralization. Int J Mol Sci 2024; 25:6306. [PMID: 38928018 PMCID: PMC11204377 DOI: 10.3390/ijms25126306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.85) in omicron towards diversifying selection (ω > 1). A marked increase in the ω occurred in the spike gene from alpha (ω = 0.2) to omicron (ω = 1.97). The ω of the replication machinery genes including RDRP, NSP3, NSP4, NSP7, NSP8, NSP10, NSP13, NSP14, and ORF9 are markedly increased, indicating that these genes/proteins are yet to be evolutionary stabilized and are contributing to the evolution of novel virulent strains. The delta-specific maximum increase in ω in the immunomodulatory genes of NSP8, NSP10, NSP16, ORF4, ORF5, ORF6, ORF7A, and ORF8 compared to alpha or omicron indicates delta-specific vulnerabilities for severe COVID-19 related hospitalization and death. The maximum values of ω are observed for spike (S), NSP4, ORF8 and NSP15, which indicates that the gene-specific temporal estimation of ω identifies specific genes for its super-infectivity and virulency that could be targeted for drug development.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, MI 48076, USA
| |
Collapse
|
4
|
Yerlici VT, Astori A, Kejiou NS, Jordan CA, Khosraviani N, Chan JNY, Hakem R, Raught B, Palazzo AF, Mekhail K. SARS-CoV-2 targets ribosomal RNA biogenesis. Cell Rep 2024; 43:113891. [PMID: 38427561 DOI: 10.1016/j.celrep.2024.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/02/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.
Collapse
Affiliation(s)
- V Talya Yerlici
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nevraj S Kejiou
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Chris A Jordan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Razqallah Hakem
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Alexander F Palazzo
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
5
|
Suleman M, Ishaq I, Khan H, Ullah khan S, Masood R, Albekairi NA, Alshammari A, Crovella S. Elucidating the binding mechanism of SARS-CoV-2 NSP6-TBK1 and structure-based designing of phytocompounds inhibitors for instigating the host immune response. Front Chem 2024; 11:1346796. [PMID: 38293247 PMCID: PMC10824840 DOI: 10.3389/fchem.2023.1346796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
SARS-CoV-2, also referred to as severe acute respiratory syndrome coronavirus 2, is the virus responsible for causing COVID-19, an infectious disease that emerged in Wuhan, China, in December 2019. Among its crucial functions, NSP6 plays a vital role in evading the human immune system by directly interacting with a receptor called TANK-binding kinase (TBK1), leading to the suppression of IFNβ production. Consequently, in the present study we used the structural and biophysical approaches to analyze the effect of newly emerged mutations on the binding of NSP6 and TBK1. Among the identified mutations, four (F35G, L37F, L125F, and I162T) were found to significantly destabilize the structure of NSP6. Furthermore, the molecular docking analysis highlighted that the mutant NSP6 displayed its highest binding affinity with TBK1, exhibiting docking scores of -1436.2 for the wildtype and -1723.2, -1788.6, -1510.2, and -1551.7 for the F35G, L37F, L125F, and I162T mutants, respectively. This suggests the potential for an enhanced immune system evasion capability of NSP6. Particularly, the F35G mutation exhibited the strongest binding affinity, supported by a calculated binding free energy of -172.19 kcal/mol. To disrupt the binding between NSP6 and TBK1, we conducted virtual drug screening to develop a novel inhibitor derived from natural products. From this screening, we identified the top 5 hit compounds as the most promising candidates with a docking score of -6.59 kcal/mol, -6.52 kcal/mol, -6.32 kcal/mol, -6.22 kcal/mol, and -6.21 kcal/mol. The molecular dynamic simulation of top 3 hits further verified the dynamic stability of drugs-NSP6 complexes. In conclusion, this study provides valuable insight into the higher infectivity of the SARS-CoV-2 new variants and a strong rationale for the development of novel drugs against NSP6.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Iqra Ishaq
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Safir Ullah khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Wang H, Rizvi SRA, Dong D, Lou J, Wang Q, Sopipong W, Su Y, Najar F, Agarwal PK, Kozielski F, Haider S. Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16. eLife 2023; 12:RP87884. [PMID: 38127066 PMCID: PMC10735223 DOI: 10.7554/elife.87884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The coronavirus SARS-CoV-2 protects its RNA from being recognized by host immune responses by methylation of its 5' end, also known as capping. This process is carried out by two enzymes, non-structural protein 16 (NSP16) containing 2'-O-methyltransferase and NSP14 through its N7 methyltransferase activity, which are essential for the replication of the viral genome as well as evading the host's innate immunity. NSP10 acts as a crucial cofactor and stimulator of NSP14 and NSP16. To further understand the role of NSP10, we carried out a comprehensive analysis of >13 million globally collected whole-genome sequences (WGS) of SARS-CoV-2 obtained from the Global Initiative Sharing All Influenza Data (GISAID) and compared it with the reference genome Wuhan/WIV04/2019 to identify all currently known variants in NSP10. T12I, T102I, and A104V in NSP10 have been identified as the three most frequent variants and characterized using X-ray crystallography, biophysical assays, and enhanced sampling simulations. In contrast to other proteins such as spike and NSP6, NSP10 is significantly less prone to mutation due to its crucial role in replication. The functional effects of the variants were examined for their impact on the binding affinity and stability of both NSP14-NSP10 and NSP16-NSP10 complexes. These results highlight the limited changes induced by variant evolution in NSP10 and reflect on the critical roles NSP10 plays during the SARS-CoV-2 life cycle. These results also indicate that there is limited capacity for the virus to overcome inhibitors targeting NSP10 via the generation of variants in inhibitor binding pockets.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Syed RA Rizvi
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Danni Dong
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Jiaqi Lou
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Qian Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Watanyoo Sopipong
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Yufeng Su
- College of Engineering, Design and Physical Sciences, Brunel University LondonUxbridgeUnited Kingdom
| | - Fares Najar
- High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
| | - Pratul K Agarwal
- High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
- Department of Physiological Sciences, Oklahoma State UniversityStillwaterUnited States
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Arya R, Tripathi P, Nayak K, Ganesh J, Bihani SC, Ghosh B, Prashar V, Kumar M. Insights into the evolution of mutations in SARS-CoV-2 non-spike proteins. Microb Pathog 2023; 185:106460. [PMID: 37995880 DOI: 10.1016/j.micpath.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The COVID-19 pandemic has been driven by the emergence of SARS-CoV-2 variants with mutations across all the viral proteins. Although mutations in the spike protein have received significant attention, understanding the prevalence and potential impact of mutations in other viral proteins is essential for comprehending the evolution of SARS-CoV-2. Here, we conducted a comprehensive analysis of approximately 14 million sequences of SARS-CoV-2 deposited in the GISAID database until December 2022 to identify prevalent mutations in the non-spike proteins at the global and country levels. Additionally, we evaluated the energetics of each mutation to better understand their impact on protein stability. While the consequences of many mutations remain unclear, we discuss potential structural and functional significance of some mutations. Our study highlights the ongoing evolutionary process of SARS-CoV-2 and underscores the importance of understanding changes in non-spike proteins.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Preeti Tripathi
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Karthik Nayak
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Janani Ganesh
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Biplab Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Mukesh Kumar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Mishra N, Kant R, Leung DW, Gross ML, Amarasinghe GK. Biochemical and HDX Mass Spectral Characterization of the SARS-CoV-2 Nsp1 Protein. Biochemistry 2023; 62:1744-1754. [PMID: 37205707 PMCID: PMC11687130 DOI: 10.1021/acs.biochem.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/29/2023] [Indexed: 05/21/2023]
Abstract
A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.
Collapse
Affiliation(s)
- Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Ravi Kant
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
9
|
Bhattacharya M, Alshammari A, Alharbi M, Dhama K, Lee SS, Chakraborty C. A novel mutation-proof, next-generation vaccine to fight against upcoming SARS-CoV-2 variants and subvariants, designed through AI enabled approaches and tools, along with the machine learning based immune simulation: A vaccine breakthrough. Int J Biol Macromol 2023; 242:124893. [PMID: 37207746 DOI: 10.1016/j.ijbiomac.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Emerging SARS-CoV-2 variants and subvariants are great concerns for their significant mutations, which are also responsible for vaccine escape. Therefore, the study was undertaken to develop a mutation-proof, next-generation vaccine to protect against all upcoming SARS-CoV-2 variants. We used advanced computational and bioinformatics approaches to develop a multi-epitopic vaccine, especially the AI model for mutation selection and machine learning (ML) strategies for immune simulation. AI-enabled and the top-ranked antigenic selection approaches were used to select nine mutations from 835 RBD mutations. We selected twelve common antigenic B cell and T cell epitopes (CTL and HTL) containing the nine RBD mutations and joined them with the adjuvants, PADRE sequence, and suitable linkers. The constructs' binding affinity was confirmed through docking with TLR4/MD2 complex and showed significant binding free energy (-96.67 kcal mol-1) with positive binding affinity. Similarly, the calculated eigenvalue (2.428517e-05) from the NMA of the complex reveals proper molecular motion and superior residues' flexibility. Immune simulation shows that the candidate can induce a robust immune response. The designed mutation-proof, multi-epitopic vaccine could be a remarkable candidate for upcoming SARS-CoV-2 variants and subvariants. The study method might guide researchers in developing AI-ML and immunoinformatics-based vaccines for infectious disease.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
10
|
Ghaleh SS, Rahimian K, Mahmanzar M, Mahdavi B, Tokhanbigli S, Sisakht MM, Farhadi A, Bakhtiari MM, Kuehu DL, Deng Y. SARS-CoV-2 Non-structural protein 1(NSP1) mutation virulence and natural selection: Evolutionary trends in the six continents. Virus Res 2023; 323:199016. [PMID: 36473671 PMCID: PMC9721189 DOI: 10.1016/j.virusres.2022.199016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Rapid transmission and reproduction of RNA viruses prepare conducive conditions to have a high rate of mutations in their genetic sequence. The viral mutations make adapt the severe acute respiratory syndrome coronavirus 2 in the host environment and help the evolution of the virus then also caused a high mortality rate by the virus that threatens worldwide health. Mutations and adaptation help the virus to escape confrontations that are done against it. METHODS In the present study, we analyzed 6,510,947 sequences of non-structural protein 1 as one of the conserved regions of the virus to find out frequent mutations and substitute amino acids in comparison with the wild type. NSP1 mutations rate divided into continents were different. RESULTS Based on this continental categorization, E87D in global vision and also in Europe notably increased. The E87D mutation has signed up to January 2022 as the first frequent mutation observed. The remarkable mutations, H110Y and R24C have the second and third frequencies, respectively. CONCLUSION According to the important role of non-structural protein 1 on the host mRNA translation, developing drug design against the protein could be so hopeful to find more effective ways the control and then treatment of the global pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
| | - Karim Rahimian
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics. Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Tokhanbigli
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Amin Farhadi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
11
|
Alisoltani A, Jaroszewski L, Godzik A, Iranzadeh A, Simons LM, Dean TJ, Lorenzo-Redondo R, Hultquist JF, Ozer EA. ViralVar: A Web Tool for Multilevel Visualization of SARS-CoV-2 Genomes. Viruses 2022; 14:2714. [PMID: 36560718 PMCID: PMC9781208 DOI: 10.3390/v14122714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The unprecedented growth of publicly available SARS-CoV-2 genome sequence data has increased the demand for effective and accessible SARS-CoV-2 data analysis and visualization tools. The majority of the currently available tools either require computational expertise to deploy them or limit user input to preselected subsets of SARS-CoV-2 genomes. To address these limitations, we developed ViralVar, a publicly available, point-and-click webtool that gives users the freedom to investigate and visualize user-selected subsets of SARS-CoV-2 genomes obtained from the GISAID public database. ViralVar has two primary features that enable: (1) the visualization of the spatiotemporal dynamics of SARS-CoV-2 lineages and (2) a structural/functional analysis of genomic mutations. As proof-of-principle, ViralVar was used to explore the evolution of the SARS-CoV-2 pandemic in the USA in pediatric, adult, and elderly populations (n > 1.7 million genomes). Whereas the spatiotemporal dynamics of the variants did not differ between these age groups, several USA-specific sublineages arose relative to the rest of the world. Our development and utilization of ViralVar to provide insights on the evolution of SARS-CoV-2 in the USA demonstrates the importance of developing accessible tools to facilitate and accelerate the large-scale surveillance of circulating pathogens.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lukasz Jaroszewski
- Biosciences Division, School of Medicine, University of California Riverside, Riverside, CA 92507, USA
| | - Adam Godzik
- Biosciences Division, School of Medicine, University of California Riverside, Riverside, CA 92507, USA
| | - Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lacy M. Simons
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Taylor J. Dean
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Ma S, Damfo S, Lou J, Pinotsis N, Bowler MW, Haider S, Kozielski F. Two Ligand-Binding Sites on SARS-CoV-2 Non-Structural Protein 1 Revealed by Fragment-Based X-ray Screening. Int J Mol Sci 2022; 23:12448. [PMID: 36293303 PMCID: PMC9604401 DOI: 10.3390/ijms232012448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The regular reappearance of coronavirus (CoV) outbreaks over the past 20 years has caused significant health consequences and financial burdens worldwide. The most recent and still ongoing novel CoV pandemic, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has brought a range of devastating consequences. Due to the exceptionally fast development of vaccines, the mortality rate of the virus has been curbed to a significant extent. However, the limitations of vaccination efficiency and applicability, coupled with the still high infection rate, emphasise the urgent need for discovering safe and effective antivirals against SARS-CoV-2 by suppressing its replication or attenuating its virulence. Non-structural protein 1 (nsp1), a unique viral and conserved leader protein, is a crucial virulence factor for causing host mRNA degradation, suppressing interferon (IFN) expression and host antiviral signalling pathways. In view of the essential role of nsp1 in the CoV life cycle, it is regarded as an exploitable target for antiviral drug discovery. Here, we report a variety of fragment hits against the N-terminal domain of SARS-CoV-2 nsp1 identified by fragment-based screening via X-ray crystallography. We also determined the structure of nsp1 at atomic resolution (0.99 Å). Binding affinities of hits against nsp1 and potential stabilisation were determined by orthogonal biophysical assays such as microscale thermophoresis and thermal shift assays. We identified two ligand-binding sites on nsp1, one deep and one shallow pocket, which are not conserved between the three medically relevant SARS, SARS-CoV-2 and MERS coronaviruses. Our study provides an excellent starting point for the development of more potent nsp1-targeting inhibitors and functional studies on SARS-CoV-2 nsp1.
Collapse
Affiliation(s)
- Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shymaa Damfo
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiaqi Lou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | | | - Shozeb Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London WC1H 9RN, UK
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
13
|
Yan K, Dumenil T, Tang B, Le TT, Bishop CR, Suhrbier A, Rawle DJ. Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evol 2022; 8:veac063. [PMID: 35919871 PMCID: PMC9338707 DOI: 10.1093/ve/veac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Human ACE2 Human angiotensin converting enzyme 2 (hACE2) is the key cell attachment and entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the original SARS-CoV-2 isolates unable to use mouse ACE2 (mACE2). Herein we describe the emergence of a SARS-CoV-2 strain capable of ACE2-independent infection and the evolution of mouse-adapted (MA) SARS-CoV-2 by in vitro serial passaging of virus in co-cultures of cell lines expressing hACE2 and mACE2. MA viruses evolved with up to five amino acid changes in the spike protein, all of which have been seen in human isolates. MA viruses replicated to high titers in C57BL/6J mouse lungs and nasal turbinates and caused characteristic lung histopathology. One MA virus also evolved to replicate efficiently in several ACE2-negative cell lines across several species, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) ACE2 knockout cells. An E484D substitution is likely involved in ACE2-independent entry and has appeared in only ≈0.003 per cent of human isolates globally, suggesting that it provided no significant selection advantage in humans. ACE2-independent entry reveals a SARS-CoV-2 infection mechanism that has potential implications for disease pathogenesis, evolution, tropism, and perhaps also intervention development.
Collapse
Affiliation(s)
- Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Thuy T Le
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, 300 Herston Road, Herston, 4029 and The University of Queensland, St Lucia, 4072, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| |
Collapse
|
14
|
Salami Ghaleh S, Rahimian K, Mahmanzar M, Mahdavi B, Tokhanbigli S, Mollapour Sisakht M, Farhadi A, Mousakhan Bakhtiari M, Lee Kuehu D, Deng Y. SARS-CoV-2 Non-Structural Protein 1(NSP1) Mutation Virulence and Natural Selection: Evolutionary Trends in the Six Continents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.22.501212. [PMID: 35923310 PMCID: PMC9347281 DOI: 10.1101/2022.07.22.501212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unsegmented positivesense single-stranded RNA virus that belongs to the β-coronavirus . This virus was the cause of a novel severe acute respiratory syndrome in 2019 (COVID-19) that emerged in Wuhan, China at the early stage of the pandemic and rapidly spread around the world. Rapid transmission and reproduction of SARS-CoV-2 threaten worldwide health with a high mortality rate from the virus. According to the significant role of non-structural protein 1 (NSP1) in inhibiting host mRNA translation, this study focuses on the link between amino acid sequences of NSP1 and alterations of them spreading around the world. The SARS-CoV-2 NSP1 protein sequences were analyzed and FASTA files were processed by Python language programming libraries. Reference sequences compared with each NSP1 sample to identify every mutation and categorize them were based on continents and frequencies. NSP1 mutations rate divided into continents were different. Based on continental studies, E87D in global vision and also in Europe notably increased. The E87D mutation has significantly risen especially in the last months of the study as the first frequent mutation observed. The remarkable mutations, H110Y and R24C, have the second and third frequencies, respectively. Based on this mutational information, despite NSP1 being a conserved sequence occurrence, these mutations change the rate of flexibility and stability of the NSP1 protein, which can eventually affect inhibiting the host translation. IMPORTANCE In this study, we analyzed 6,510,947 sequences of non-structural protein 1 as a conserved region of SARS-CoV-2. According to the obtained results, 93.4819% of samples had no mutant regions on their amino acid sequences. Heat map data of mutational samples demonstrated high percentages of mutations that occurred in the region of 72 to 126 amino acids indicating a hot spot region of the protein. Increased rates of E87D, H110Y, and R24C mutations in the timeline of our study were reported as significant compared to available mutant samples. Analyzing the details of replacing amino acids in the most frequent E87D mutation reveals the role of this alteration in increasing molecule flexibility and destabilizing the structure of the protein.
Collapse
|
15
|
Markarian NM, Galli G, Patel D, Hemmings M, Nagpal P, Berghuis AM, Abrahamyan L, Vidal SM. Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Front Microbiol 2022; 13:933983. [PMID: 35847101 PMCID: PMC9283111 DOI: 10.3389/fmicb.2022.933983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Gaël Galli
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- CNRS, ImmunoConcEpT, UMR 5164, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, FHU ACRONIM, Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares Est/Sud-Ouest, Bordeaux, France
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| | - Mark Hemmings
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Priya Nagpal
- Department of Pharmacology, McGill University, Montréal, QC, Canada
| | | | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| |
Collapse
|
16
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
17
|
Afsar M, Narayan R, Akhtar MN, Das D, Rahil H, Nagaraj SK, Eswarappa SM, Tripathi S, Hussain T. Drug targeting Nsp1-ribosomal complex shows antiviral activity against SARS-CoV-2. eLife 2022; 11:74877. [PMID: 35323109 PMCID: PMC9018067 DOI: 10.7554/elife.74877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 non-structural protein 1 (Nsp1) contains an N-terminal domain and C-terminal helices connected by a short linker region. The C-terminal helices of Nsp1 (Nsp1-C-ter) from SARS-CoV-2 bind in the mRNA entry channel of the 40S ribosomal subunit and blocks mRNA entry, thereby shutting down host protein synthesis. Nsp1 suppresses host immune function and is vital for viral replication. Hence, Nsp1 appears to be an attractive target for therapeutics. In this study, we have in silico screened Food and Drug Administration (FDA)-approved drugs against Nsp1-C-ter. Among the top hits obtained, montelukast sodium hydrate binds to Nsp1 with a binding affinity (KD) of 10.8 ± 0.2 µM in vitro. It forms a stable complex with Nsp1-C-ter in simulation runs with –95.8 ± 13.3 kJ/mol binding energy. Montelukast sodium hydrate also rescues the inhibitory effect of Nsp1 in host protein synthesis, as demonstrated by the expression of firefly luciferase reporter gene in cells. Importantly, it shows antiviral activity against SARS-CoV-2 with reduced viral replication in HEK cells expressing ACE2 and Vero-E6 cells. We, therefore, propose montelukast sodium hydrate can be used as a lead molecule to design potent inhibitors to help combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mohammad Afsar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
| | - Rohan Narayan
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
| | - Deepakash Das
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
| | - Huma Rahil
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
| | - Santhosh Kambaiah Nagaraj
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Sandeep M Eswarappa
- BiochemistryDepartment of Biochemistry, Indian Institute of Science Bangalore, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
| |
Collapse
|