1
|
Choi SJ, Lee MH, Liang Y, Lin EC, Khanthaphixay B, Leigh PJ, Hwang DS, Yoon JY. Machine learning classification of quorum sensing-induced bacterial aggregation using flow rate assays on paper chips toward bacterial species identification in potable water sources. Biosens Bioelectron 2025; 284:117563. [PMID: 40349566 DOI: 10.1016/j.bios.2025.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Preventing waterborne disease caused by bacteria is especially important in low-resource settings, where skilled personnel and laboratory equipment are scarce. This work reports a straightforward method for classifying bacterial species by monitoring the capillary flow rates on a multi-channel paper microfluidic chip, where quorum sensing (QS)-induced bacterial aggregation leads to measurable changes in flow rates, enabling species differentiation. It required no fluorescent molecules, microscope, particles, covalent conjugation, or surface immobilization. Five representative QS molecules and control were added to each bacterial sample, and their different extents of bacterial aggregation resulted in varied flow rates. Flow rates were collected for the duration of the flow to build the learning database, and the XGBoost machine learning algorithm predicted the accuracy for classifying ten bacterial species, including 7 gram-negative and 3 gram-positive species. Three different algorithms were developed for high, medium, and low bacterial concentration ranges, and the classification accuracies of all the algorithms exceeded 75.0 %. Using XGBoost and the previously established database, we tested bacteria in the field water samples and successfully predicted the dominant species. The technology developed in this study, using only QS molecules and a paper microfluidic chip, offers a simple system for detecting microorganisms in drinking water to help prevent waterborne diseases.
Collapse
Affiliation(s)
- Seung-Ju Choi
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Hee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
| | - Ethan C Lin
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Bradley Khanthaphixay
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Preston J Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon, 21983, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
2
|
Barasarathi J, Perveen K, Khan F, Muthukumaran M, Debnath A, Behera M, Pongen M, Sayyed R, Mastinu A. Targeting Agrobacterium tumefaciens: A Computational Study on Quorum Sensing Inhibition. J Basic Microbiol 2025:e70041. [PMID: 40264335 DOI: 10.1002/jobm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Crown gall disease, caused by Agrobacterium tumefaciens, results in significant loss in agricultural productivity losses due to induced tumor-like growths on various crops. The virulence of A. tumefaciens is controlled by its quorum sensing (QS) system, specifically through the TraR protein, which regulates the expression of genes essential for pathogenicity and plasmid transfer. Beyond pathogenic interactions, QS plays a crucial role in the plant microbiome, influencing symbiosis, competition, and plant health. This study aimed to identify QS inhibitors (QSIs) that disrupt TraR-mediated signaling as a novel approach to mitigate crown gall disease while exploring broader implications for plant-microbe interactions. Using a combination of molecular docking, molecular dynamics (MD) simulations, and protein-protein interaction analysis, we screened a library of potential QSIs and identified N-phenylselenourea as a potent candidate with a binding affinity of -8 kcal/mol to TraR. MD simulations confirmed the stability of this compound within the TraR binding pocket, with strong interactions observed with key residues such as Tyr53 and Asp70. Gene Ontology (GO) enrichment analysis supported these findings, highlighting the disruption of critical pathogenic pathways. Our findings underscore the dual benefits of QSIs, offering a targeted strategy to control A. tumefaciens infections while potentially enhancing plant-microbiome interactions for improved plant health. This study lays the groundwork for developing sustainable agricultural practices by leveraging QS disruption to manage plant diseases and promote beneficial microbial communities.
Collapse
Affiliation(s)
- Jayanthi Barasarathi
- Faculty of Health and Life Sciences (FHLS), INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faheema Khan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M Muthukumaran
- PG and Research, Department of Botany, Ramakrishna Mission Vivekananda College (Autonomous), (Affiliated to the University of Madras), Chennai, India
| | | | - Maheshwari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Moaakum Pongen
- KVK Wokha, ICAR Research Complex for NEH Region, Nagaland Centre, Wokha, India
| | - Riyaz Sayyed
- Department of Biological Sciences and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, Oman
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Oubohssaine M, Rabeh K, Hnini M. Symbiosis vs pathogenesis in plants: Reflections and perspectives. Microb Pathog 2025; 200:107333. [PMID: 39870251 DOI: 10.1016/j.micpath.2025.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens. Understanding the fundamental molecular mechanisms governing these associations is crucial, given the notable susceptibility of plants to external environmental influences. Based on quorum sensing signals, phytohormone, and volatile organic carbon (VOC) production and others molecules, microorganisms influence plant growth, health, and defense responses. This review explores the multifaceted relationships between plants and their associated microorganisms, encompassing mutualism, commensalism, and antagonism. The molecular mechanisms of symbiotic and pathogenic interactions share similarities but lead to different outcomes. While symbiosis benefits both parties, pathogenesis harms the host. Genetic adaptations optimize these interactions, involving coevolution driving process. Environmental factors influence outcomes, emphasizing the need for understanding and manipulation of microbial communities for beneficial results. Research directions include employing multi-omics techniques, functional studies, investigating environmental factors, understanding evolutionary trajectories, and harnessing knowledge to engineer synthetic microbial consortia for sustainable agriculture and disease management.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Karim Rabeh
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural research, PO. Box 415, Rabat, 10090, Morocco
| | - Mohamed Hnini
- Research Team in Science and Technology, High School of Technology Laayoune, Ibn Zohr University, Morocco
| |
Collapse
|
4
|
Flores-Nunez VM, Stukenbrock EH. The impact of filamentous plant pathogens on the host microbiota. BMC Biol 2024; 22:175. [PMID: 39148076 PMCID: PMC11328434 DOI: 10.1186/s12915-024-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
When a pathogen invades a plant, it encounters a diverse microbiota with some members contributing to the health and growth of the plant host. So far, the relevance of interactions between pathogens and the plant microbiota are poorly understood; however, new lines of evidence suggest that pathogens play an important role in shaping the microbiome of their host during invasion. This review aims to summarize recent findings that document changes in microbial community composition during the invasion of filamentous pathogens in plant tissues. We explore the known mechanisms of interaction between plant pathogens and the host microbiota that underlie these changes, particularly the pathogen-encoded traits that are produced to target specific microbes. Moreover, we discuss the limitations of current strategies and shed light on new perspectives to study the complex interaction networks between filamentous pathogens and the plant microbiome.
Collapse
Affiliation(s)
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118, Kiel, Germany.
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| |
Collapse
|
5
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
6
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
7
|
Yang L, Guo Y, Yang H, Li S, Zhang Y, Hao L. Taxonomic and functional assembly cues enrich the endophytic tobacco microbiota across epiphytic compartments. mSphere 2024; 9:e0060723. [PMID: 38085017 PMCID: PMC10826349 DOI: 10.1128/msphere.00607-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 01/31/2024] Open
Abstract
The plant microbiome plays a critical role in plant growth, development, and health, with endophytes being recognized as essential members due to their close interactions with host plants. However, knowledge gaps remain in understanding the mechanisms driving the colonization and establishment of endophytic communities. To address this issue, we investigated the microbiota of tobacco roots and leaves, including both epiphytic and endophytic microorganisms. We found that Actinobacteria and Alphaproteobacteria were significantly enriched in the root endosphere. Additionally, we identified higher abundances of functional traits involved in antibiotic synthesis, plant cell wall degradation, iron metabolism, secretion systems, and nicotine degradation enzymes in the endosphere. We further studied metagenome-assembled genomes from the rhizosphere and root endosphere, revealing a greater diversity of secondary metabolites in bacteria within the root endosphere. Together, this study provides insights into the taxonomic and functional assembly cues that may contribute to shaping the endophytic plant microbiota.IMPORTANCEThe presence of diverse microorganisms within plant tissues under natural conditions is a well-established fact. However, due to the plant immune system's barrier and the unique microhabitat of the plant interior, it remains unclear what specific characteristics bacteria require to successfully colonize and thrive in the plant endosphere. Recognizing the significance of unraveling these functional features, our study focused on investigating the enriched traits in the endophytic microbiota compared to the epiphytes. Through our research, we have successfully identified the taxonomic and functional assembly cues that drive the enrichment of the endophytic microbiota across the epiphytic compartments. These findings shed new light on the intricate mechanisms of endophyte colonization, thereby deepening our understanding of plant-microbe interactions and paving the way for further advancements in microbiome manipulation.
Collapse
Affiliation(s)
- Luhua Yang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yunzeng Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, China
| |
Collapse
|
8
|
Li Y, Chen Y, Fu Y, Shao J, Liu Y, Xuan W, Xu G, Zhang R. Signal communication during microbial modulation of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:526-537. [PMID: 37419655 DOI: 10.1093/jxb/erad263] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Every living organism on Earth depends on its interactions with other organisms. In the rhizosphere, plants and microorganisms constantly exchange signals and influence each other's behavior. Recent studies have shown that many beneficial rhizosphere microbes can produce specific signaling molecules that affect plant root architecture and therefore could have substantial effects on above-ground growth. This review examines these chemical signals and summarizes their mechanisms of action, with the aim of enhancing our understanding of plant-microbe interactions and providing references for the comprehensive development and utilization of these active components in agricultural production. In addition, we highlight future research directions and challenges, such as searching for microbial signals to induce primary root development.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Solomon W, Janda T, Molnár Z. Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108290. [PMID: 38150841 DOI: 10.1016/j.plaphy.2023.108290] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
In the rhizosphere, the activities within all processes and functions are primarily influenced by plant roots, microorganisms present in the rhizosphere, and the interactions between roots and microorganisms. The rhizosphere, a dynamic zone surrounding the roots, provides an ideal environment for a diverse microbial community, which significantly shapes plant growth and development. Microbial activity in the rhizosphere can promote plant growth by increasing nutrient availability, influencing plant hormonal signaling, and repelling or outcompeting pathogenic microbial strains. Understanding the associations between plant roots and soil microorganisms has the potential to revolutionize crop yields, improve productivity, minimize reliance on chemical fertilizers, and promote sustainable plant growth technologies. The rhizosphere microbiome could play a vital role in the next green revolution and contribute to sustainable and eco-friendly agriculture. However, there are still knowledge gaps concerning plant root-environment interactions, particularly regarding roots and microorganisms. Advances in metabolomics have helped to understand the chemical communication between plants and soil biota, yet challenges persist. This article provides an overview of the latest advancements in comprehending the communication and interplay between plant roots and microbes, which have been shown to impact crucial factors such as plant growth, gene expression, nutrient absorption, pest and disease resistance, and the alleviation of abiotic stress. By improving these aspects, sustainable agriculture practices can be implemented to increase the overall productivity of plant ecosystems.
Collapse
Affiliation(s)
- Wogene Solomon
- Department of Plant Science, Albert Kazmer Faculty of Mosonmagyarovar, Széchenyi István University, Hungary.
| | - Tibor Janda
- Agricultural Institute Centre for Agricultural Research, Martonvásár, Hungary
| | - Zoltán Molnár
- Department of Plant Science, Albert Kazmer Faculty of Mosonmagyarovar, Széchenyi István University, Hungary
| |
Collapse
|
10
|
Kraxberger K, Antonielli L, Kostić T, Reichenauer T, Sessitsch A. Diverse bacteria colonizing leaves and the rhizosphere of lettuce degrade azoxystrobin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164375. [PMID: 37245813 DOI: 10.1016/j.scitotenv.2023.164375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Concerns about the possible effects of pesticide residues on both the environment and human health have increased worldwide. Bioremediation by the use of microorganisms to degrade or remove these residues has emerged as a powerful technology. However, the knowledge about the potential of different microorganisms for pesticide degradation is limited. This study focused on the isolation and characterisation of bacterial strains with the potential to degrade the active fungicide ingredient azoxystrobin. Potential degrading bacteria were tested in vitro and in the greenhouse, and the genomes of the best degrading strains were sequenced and analysed. We identified and characterised 59 unique bacterial strains, which were further tested in vitro and in greenhouse trials for their degradation activity. The best degraders from a foliar application trial in the greenhouse were identified as Bacillus subtilis strain MK101, Pseudomonas kermanshahensis strain MK113 and Rhodococcus fascians strain MK144 and analysed by whole genome sequencing. Genome analysis revealed that these three bacterial strains encode several genes predicted to be involved in the degradation of pesticides e.g., benC, pcaG, pcaH, however we could not find any specific gene previously reported to be involved in azoxystrobin degradation e.g., strH. Genome analysis pinpointed to some potential activities involved in plant growth promotion.
Collapse
Affiliation(s)
| | - Livio Antonielli
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Tanja Kostić
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Thomas Reichenauer
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
11
|
Hartmann A, Proença DN. Biological Control of Phytopathogens: Mechanisms and Applications. Pathogens 2023; 12:783. [PMID: 37375473 DOI: 10.3390/pathogens12060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
According to the inherent ecological mechanisms within community structures, organismic interactions are mediated by chemical structures and signaling molecules as well as enzymatic activities targeting the vital activities of microbial competitors [...].
Collapse
Affiliation(s)
- Anton Hartmann
- Department of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University München (LMU), Großhaderner Str. 2, 82152 Munich, Germany
| | - Diogo Neves Proença
- Department of Life Sciences, ARISE, CEMMPRE, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
12
|
Duan Y, Han M, Grimm M, Ponath J, Reichelt M, Mithöfer A, Schikora A. Combination of bacterial N-acyl homoserine lactones primes Arabidopsis defenses via jasmonate metabolism. PLANT PHYSIOLOGY 2023; 191:2027-2044. [PMID: 36649188 PMCID: PMC10022612 DOI: 10.1093/plphys/kiad017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
N-acyl homoserine lactones (AHLs) are important players in plant-bacteria interactions. Different AHL-producing bacteria can improve plant growth and resistance against plant pathogens. In nature, plants may host a variety of AHL-producing bacteria and frequently experience numerous AHLs at the same time. Therefore, a coordinated response to combined AHL molecules is necessary. The purpose of this study was to explore the mechanism of AHL-priming using combined AHL molecules including N-(3-oxo-hexanoyl)-L-homoserine lactone, N-3-oxo-octanoyl-L-homoserine lactone, N-3-oxo-dodecanoyl-L-homoserine lactone, and N-3-oxo-tetradecanoyl-L-homoserine lactone and AHL-producing bacteria including Serratia plymuthica HRO-C48, Rhizobium etli CFN42, Burkholderia graminis DSM17151, and Ensifer meliloti (Sinorhizobium meliloti) Rm2011. We used transcriptome analysis, phytohormone measurements, as well as genetic and microbiological approaches to assess how the combination of structurally diverse AHL molecules influence Arabidopsis (Arabidopsis thaliana). Our findings revealed a particular response to a mixture of AHL molecules (AHL mix). Different expression patterns indicated that the reaction of plants exposed to AHL mix differs from that of plants exposed to single AHL molecules. In addition, different content of jasmonic acid (JA) and derivatives revealed that jasmonates play an important role in AHL mix-induced priming. The fast and stable decreased concentration of COOH-JA-Ile after challenge with the flagellin-derived peptide flg22 indicated that AHL mix modifies the metabolism of jasmonates. Study of various JA- and salicylic acid-related Arabidopsis mutants strengthened the notion that JA homeostasis is involved in AHL-priming. Understanding how the combination of AHLs primes plants for enhanced resistance has the potential to broaden our approaches in sustainable agriculture and will help to effectively protect plants against pathogens.
Collapse
Affiliation(s)
- Yongming Duan
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Min Han
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Maja Grimm
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Jessica Ponath
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Mithöfer
- Max-Planck-Institute for Chemical Ecology, Research Group Plant Defense Physiology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | | |
Collapse
|
13
|
Liao J, Li Z, Xiong D, Shen D, Wang L, Shao X, Li T, Qian G. A Novel and Efficient Platform for Discovering Noncanonical Quorum-Quenching Proteins. Microbiol Spectr 2023; 11:e0343722. [PMID: 36475880 PMCID: PMC9927378 DOI: 10.1128/spectrum.03437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS) is a well-known chemical signaling system responsible for intercellular communication that is widespread in bacteria. Acyl-homoserine lactone (AHL) is the most-studied QS signal. Previously, bacterially encoded AHL-degrading enzymes were considered to be canonical quorum-quenching proteins that have been widely used to control pathogenic infections. Here, we report a novel platform that enabled the efficient discovery of noncanonical AHL quorum-quenching proteins. This platform initially asked bacteriologists to carry out comparative genomic analyses between phylogenetically related AHL-producing and non-AHL-producing members to identify genes that are conservatively shared by non-AHL-producing members but absent in AHL-producing species. These candidate genes were then introduced into recombinant AHL-producing E. coli to screen for target proteins with the ability to block AHL production. Via this platform, we found that non-AHL-producing Lysobacter containing numerous environmentally ubiquitous members encoded a conserved glycosyltransferase-like protein Le4759, which was experimentally shown to be a noncanonical AHL-quenching protein. Le4759 could not directly degrade exogenous AHL but rather recognized and altered the activities of multiple AHL synthases through protein-protein interactions. This versatile capability enabled Le4759 to block specific AHL synthase such as CarI from Pectobacterium carotovorum to reduce its protein abundance to suppress AHL synthesis, thereby impairing bacterial infection. Thus, this study provided bacteriologists with a unique platform to discover noncanonical quorum-quenching proteins that could be developed as promising next-generation drug candidates to overcome emerging bacterial antibiotic resistance. IMPORTANCE Targeting and blocking bacterial quorum sensing (QS), the process known as quorum quenching (QQ) is an effective mean to control bacterial infection and overcome the emerging antibiotic resistance. Previously, diverse QS signal-degradation enzymes are identified as canonical QQ proteins. Here, we provided a novel and universal platform that enabled to discover previously unidentified noncanonical QQ proteins that were unable to degrade acyl-homoserine lactone (AHL) but could block AHL generation by recognizing multiple AHL synthases via direct protein-protein interactions. Our findings are believed to trigger broad interest for bacteriologists to identify potentially widely distributed noncanonical QQ proteins that have great potential for developing next-generation anti-infectious drugs.
Collapse
Affiliation(s)
- Jinxing Liao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zihan Li
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Dan Xiong
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Lu Wang
- Medical College, China Three Gorges University, Yichang, People’s Republic of China
| | - Xiaolong Shao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
He YW, Deng Y, Miao Y, Chatterjee S, Tran TM, Tian J, Lindow S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol 2023; 31:36-50. [PMID: 35941062 DOI: 10.1016/j.tim.2022.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.
Collapse
Affiliation(s)
- Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinyue Deng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Yansong Miao
- School of Biological Science, Nanyang Technological University, Singapore
| | | | - Tuan Minh Tran
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jing Tian
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Steven Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Rex DAB, Saptami K, Chandrasekaran J, Rekha PD. Pleotropic potential of quorum sensing mediated N-acyl homoserine lactones (AHLs) at the LasR and RhlR receptors of Pseudomonas aeruginosa. Struct Chem 2022. [DOI: 10.1007/s11224-022-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Wild Wheat Rhizosphere-Associated Plant Growth-Promoting Bacteria Exudates: Effect on Root Development in Modern Wheat and Composition. Int J Mol Sci 2022; 23:ijms232315248. [PMID: 36499572 PMCID: PMC9740669 DOI: 10.3390/ijms232315248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.
Collapse
|
17
|
Rosier A, Bais HP. Protocol: a simple method for biosensor visualization of bacterial quorum sensing and quorum quenching interaction on Medicago roots. PLANT METHODS 2022; 18:112. [PMID: 36114554 PMCID: PMC9479286 DOI: 10.1186/s13007-022-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Defining interactions of bacteria in the rhizosphere (encompassing the area near and on the plant root) is important to understand how they affect plant health. Some rhizosphere bacteria, including plant growth promoting rhizobacteria (PGPR) engage in the intraspecies communication known as quorum sensing (QS). Many species of Gram-negative bacteria use extracellular autoinducer signal molecules called N-acyl homoserine lactones (AHLs) for QS. Other rhizobacteria species, including PGPRs, can interfere with or disrupt QS through quorum quenching (QQ). Current AHL biosensor assays used for screening and identifying QS and QQ bacteria interactions fail to account for the role of the plant root. METHODS Medicago spp. seedlings germinated on Lullien agar were transferred to soft-agar plates containing the broad-range AHL biosensor Agrobacterium tumefaciens KYC55 and X-gal substrate. Cultures of QS and QQ bacteria as well as pure AHLs and a QQ enzyme were applied to the plant roots and incubated for 3 days. RESULTS We show that this expanded use of an AHL biosensor successfully allowed for visualization of QS/QQ interactions localized at the plant root. KYC55 detected pure AHLs as well as AHLs from live bacteria cultures grown directly on the media. We also showed clear detection of QQ interactions occurring in the presence of the plant root. CONCLUSIONS Our novel tri-trophic system using an AHL biosensor is useful to study QS interspecies interactions in the rhizosphere.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
18
|
Abbamondi GR, Tommonaro G. Research Progress and Hopeful Strategies of Application of Quorum Sensing in Food, Agriculture and Nanomedicine. Microorganisms 2022; 10:1192. [PMID: 35744710 PMCID: PMC9229978 DOI: 10.3390/microorganisms10061192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) regulates the expression of several genes including motility, biofilm development, virulence expression, population density detection and plasmid conjugation. It is based on "autoinducers", small molecules that microorganisms produce and release in the extracellular milieu. The biochemistry of quorum sensing is widely discussed and numerous papers are available to scientists. The main purpose of this research is to understand how knowledge about this mechanism can be exploited for the benefit of humans and the environment. Here, we report the most promising studies on QS and their resulting applications in different fields of global interest: food, agriculture and nanomedicine.
Collapse
Affiliation(s)
- Gennaro Roberto Abbamondi
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy;
| | | |
Collapse
|