1
|
Zhang J, Liang Z, Liu F, Wang Y, Huang W, Nie J. Research Progress on Hepatitis E Virus Culture. Pathogens 2025; 14:456. [PMID: 40430776 DOI: 10.3390/pathogens14050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen and the main cause of acute viral hepatitis in China, resulting in a significant burden on public health. Developing a highly efficient in vitro culture system for HEV is crucial for understanding the determinants of HEV infection in humans and other animals, the pathogenic mechanisms, as well as the screening and evaluation of antiviral drugs. In this paper, the research progress on HEV in vitro culture systems is reviewed to provide a convenient reference for further research on HEV, aiding comprehensive efforts toward the widespread prevention and control of related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Ziteng Liang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- National Institutes for Food and Drug Control, Chinese Academy of Medical Science & Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Fan Liu
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- National Institutes for Food and Drug Control, Chinese Academy of Medical Science & Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| |
Collapse
|
2
|
Li M, Li T, Hao X, Liu Y, Lan H, Zhou C. Preliminary investigation of hepatitis E virus detection by a recombinase polymerase amplification assay combined with a lateral flow strip. J Vet Diagn Invest 2023; 35:395-398. [PMID: 37029661 PMCID: PMC10331385 DOI: 10.1177/10406387231167119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen that is a significant public health problem. Detecting HEV relies mainly on conventional PCR, which is time-consuming and requires sophisticated instruments and trained staff. We aimed to establish a reverse-transcription (RT)-recombinase polymerase amplification (RPA) assay (RT-RPA) combined with a lateral flow strip (LFS; RT-RPA-LFS) to rapidly detect HEV RNA in human and rabbit samples. With the optimal reaction conditions (37°C for 30 min), our assay detected as few as 1.0 × 102 copies/mL of HEV and showed no cross-reactivity with other hepatitis viruses. We tested 28 human samples (4 fecal and 24 serum samples) and 360 rabbit samples (180 fecal and 180 serum samples) with our RT-RPA-LFS assay and compared our assay to an RT-qPCR method. There was no significant difference (p > 0.05) in the test results between the 2 assays. Our RT-RPA-LFS assay detected both HEV3 and HEV4 genotypes. Our rapid, sensitive, and specific RT-RPA-LFS assay for the detection of HEV may provide a useful detection tool for limited-resource areas.
Collapse
Affiliation(s)
- Manyu Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotian Hao
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | | | - Haiyun Lan
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Cheng Zhou
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
3
|
Oechslin N, Ankavay M, Moradpour D, Gouttenoire J. Expanding the Hepatitis E Virus Toolbox: Selectable Replicons and Recombinant Reporter Genomes. Viruses 2023; 15:v15040869. [PMID: 37112849 PMCID: PMC10147066 DOI: 10.3390/v15040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Hepatitis E virus (HEV) has received relatively little attention for decades although it is now considered as one of the most frequent causes of acute hepatitis worldwide. Our knowledge of this enterically-transmitted, positive-strand RNA virus and its life cycle remains scarce but research on HEV has gained momentum more recently. Indeed, advances in the molecular virology of hepatitis E, including the establishment of subgenomic replicons and infectious molecular clones, now allow study of the entire viral life cycle and to explore host factors required for productive infection. Here, we provide an overview on currently available systems, with an emphasis on selectable replicons and recombinant reporter genomes. Furthermore, we discuss the challenges in developing new systems which should enable to further investigate this widely distributed and important pathogen.
Collapse
|