1
|
Jayakanthan S, Punathil Vasu S, Tg SB. Efficient on-chip electrochemical lysing of foodborne bacteria for longer DNA strands with high yield for molecular analysis. Sci Rep 2025; 15:12305. [PMID: 40211067 PMCID: PMC11985488 DOI: 10.1038/s41598-025-96886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Foodborne illness is caused by the consumption of bacterial contaminated food and beverages. Diagnostic intervention in the form of point-of-care testing (PoCT) device is required for rapid detection bacteria. In the molecular diagnosis which is a nucleic acid-based method for bacterial identification, microbial cell lysis is an essential step for DNA extraction. Electrochemical lysis (ECL) is a rapid, reagent-free lysing method which can be easily integrated into PoCT devices. ECL is based on the localised increase of pH due to the water splitting reaction which generates hydroxide ions at the cathode interface under the application of DC potential. Platinum-decorated reduced graphene oxide (Pt-rGO) nanocomposite was synthesised as an effective electrocatalyst for bacterial lysis. The ECL system was fabricated with Pt-rGO nanocomposite modified screen-printed carbon electrode (Pt-rGO/SPCE). Modified screen-printed electrodes is used to efficiently lyse the main foodborne illness causing bacteria Salmonella, E.coli, and S.aureus at a low DC voltage of 3 V in 2 min. The developed ECL system outperformed standard chemical lysis kit in terms of time, cost and power. The DNA yeild from ECL is 6-10 times higher with longer DNA strands. PCR analysis shows that ECL chip could detect and amplify the DNA from the lysate.
Collapse
Affiliation(s)
- Subasini Jayakanthan
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Suneesh Punathil Vasu
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Satheesh Babu Tg
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Amrita Biomedical Engineering Centre, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| |
Collapse
|
2
|
Sandu AM, Chifiriuc MC, Vrancianu CO, Cristian RE, Alistar CF, Constantin M, Paun M, Alistar A, Popa LG, Popa MI, Tantu AC, Sidoroff ME, Mihai MM, Marcu A, Popescu G, Tantu MM. Healthcare-Associated Infections: The Role of Microbial and Environmental Factors in Infection Control-A Narrative Review. Infect Dis Ther 2025:10.1007/s40121-025-01143-0. [PMID: 40208412 DOI: 10.1007/s40121-025-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
Healthcare-associated infections (HAIs), previously known as nosocomial infections, represent a significant threat to healthcare systems worldwide, prolonging patient hospital stays and the duration of antimicrobial therapy. One of the most serious consequences of HAIs is the increase in the rate of antibiotic resistance (AR) generated by the prolonged, frequent, and sometimes incorrect use of antibiotics, which leads to the selection of resistant bacteria, making treatment difficult and expensive, with direct consequences for the safety of patients and healthcare personnel. Therefore, timely and accurate diagnosis of HAIs is mandatory to develop appropriate infection prevention and control practices (IPC) and new therapeutic strategies. This review aimed to present the prevalence, risk factors, current diagnosis, including artificial intelligence (AI) and machine learning approaches, future perspectives in combating HAIs causative bacteria (phage therapy, microbiome-based interventions, and vaccination), and HAIs surveillance strategies. Also, we discussed the latest findings regarding the relationships of AR with climate change and environmental pollution in the context of the One Health approach. Phage therapy is an emerging option that can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria causing HAIs. Clinical trials dealing with vaccine development for resistant bacteria have yielded conflicting results. Two promising strategies, fecal microbiota transplantation and probiotic therapy, proved highly effective against recurrent Clostridium difficile infections and have been shown to reduce HAI incidence in hospitalized patients undergoing antibiotic therapy. Artificial intelligence and machine learning systems offer promising predictive capabilities in processing large volumes of clinical, microbiological, and patient data but require robust data integration. Our paper argues that HAIs are still a global challenge, requiring stringent IPC policies, computer vision, and AI-powered tools. Despite promising avenues like integrated One Health approaches, optimized phage therapy, microbiome-based interventions, and targeted vaccine development, several knowledge gaps in clinical efficacy, standardization, and pathogen complexity remain to be answered.
Collapse
Grants
- CNFIS-FDI-2024-F-0484 INOVEX University of Bucharest
- Pillar III Ministry of Research, Innovation and Digitalization through the National Recovery and Resilience Plan (PNRR) of Romania
- Component C9/Investment no. 8 (I8) - contract CF 68 Ministry of Research, Innovation and Digitalization through the National Recovery and Resilience Plan (PNRR) of Romania
- Project No. RO1567-IBB05/2023 Institute of Biology Bucharest of the Romanian Academy
- project no. 23020101 The core program within the National Research Development and Innovation Plan, 2022-2027', carried out with the support of the Ministry of Research, Innovation and Digitalization (MCID),
- Contract no. 7N from 3 January 2023 The core program within the National Research Development and Innovation Plan, 2022-2027', carried out with the support of the Ministry of Research, Innovation and Digitalization (MCID),
- Dezvoltarea cercetării genomice în România - ROGEN" (Development of genomic research in Romania -ROGEN). ROGEN
Collapse
Affiliation(s)
- Andreea M Sandu
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari 8, District 5, 050474, Bucharest, Romania
- The County Emergency Hospital, Aleea Spitalului 36, 110283, Pitești, Romania
| | - Mariana C Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Șoseaua Panduri 90, District 5, 050663, Bucharest, Romania
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
- Biological Sciences Division, Romanian Academy, 125 Calea Victoriei, 010071, Bucharest, Romania
| | - Corneliu O Vrancianu
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari 8, District 5, 050474, Bucharest, Romania.
- The Research Institute of the University of Bucharest, ICUB, Șoseaua Panduri 90, District 5, 050663, Bucharest, Romania.
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania.
| | - Roxana-E Cristian
- The Research Institute of the University of Bucharest, ICUB, Șoseaua Panduri 90, District 5, 050663, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Cristina F Alistar
- The Research Institute of the University of Bucharest, ICUB, Șoseaua Panduri 90, District 5, 050663, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, ICUB, Șoseaua Panduri 90, District 5, 050663, Bucharest, Romania
- Institute of Biology of Romanian Academy, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mihaela Paun
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
- Faculty of Administration and Business, University of Bucharest, Bucharest, Romania
| | - Alexandru Alistar
- The Research Institute of the University of Bucharest, ICUB, Șoseaua Panduri 90, District 5, 050663, Bucharest, Romania
| | - Loredana G Popa
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021, Bucharest, Romania
| | - Mircea I Popa
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021, Bucharest, Romania
- Preclinical Testing Unit, Cantacuzino National Military Medical Institute for Research and Development, 050096, Bucharest, Romania
| | - Ana C Tantu
- University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349, Craiova, Romania
- Emergency Clinical County Hospital of Craiova, Tabaci 1, 200642, Craiova, Romania
| | - Manuela E Sidoroff
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mara M Mihai
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021, Bucharest, Romania
- Department of Oncologic Dermatology, "Elias" University Emergency Hospital, 010024, Bucharest, Romania
| | - Andreea Marcu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021, Bucharest, Romania
| | - George Popescu
- Department of Neurosurgery 4, Bagdasar-Arseni Emergency Clinical Hospital, Şoseaua Berceni 12, 041915, Bucharest, Romania
| | - Monica M Tantu
- Department of Medical Assistance and Physical Therapy, Pitesti University Center, Târgu din Vale 1, 110040, Piteşti, Romania
- Faculty of Science, Physical Education and Informatics, National University of Science and Technology, Politehnica, Splaiul Independenţei 313, District 6, 060042, Bucharest, Romania
| |
Collapse
|
3
|
Camargo M, Muñoz M, Patiño LH, Ramírez JD. Strengthening molecular testing capacity in Colombia: Challenges and opportunities. Diagn Microbiol Infect Dis 2025; 111:116716. [PMID: 39894004 DOI: 10.1016/j.diagmicrobio.2025.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The COVID-19 pandemic has accelerated efforts to enhance pathogen detection using molecular biology techniques. This study examines the expansion of molecular testing capacity in Colombia, identifying strengths and areas for improvement in the existing infrastructure. The study began with the creation of a database inventorying laboratories based on publicly available data from government entities and active web searches. Ten laboratories were selected for detailed characterization. Structured surveys assessed their testing capacity and progress in implementing molecular-based diagnostic tests for various infectious diseases. The strategy for identifying laboratories showed a total of 311 laboratories. Of these, 65 % (n = 202) are private and 21 % (n = 65) are state-owned, mainly public health laboratories, and the remaining 14 % (n = 44) are affiliated with academic institutions. The highest concentration of these labs is in Bogotá, Antioquia, and Valle del Cauca, primarily in urban areas. Key limitations affecting testing laboratories in Colombia include: i) infrastructure (26.2 %), highlighting the need for standardized facility guidelines; ii) quality and documentation (16.7 %), requiring stronger quality management systems; iii) biosafety (14.3 %), emphasizing the need for continuous waste management, especially in public labs; and iv) human talent (10.7 %), needing better policies for staff retention, particularly in government institutions. Strengthening laboratories can establish a comprehensive national molecular testing system. Integrating molecular tests into health system diagnostic algorithms and implementing sustainable laboratory strategies will address human health challenges and support the "One Health" approach for animal and environmental health.
Collapse
Affiliation(s)
- Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia; Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza, Cundinamarca, 250027, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia; Instituto de Biotecnología -UN (IBUN), Universidad Nacional de Colombia, Bogotá D.C., 111321, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Alenazi F, Khan MS. Novel antimicrobial strategies for diabetic foot infections: addressing challenges and resistance. Acta Diabetol 2025; 62:303-321. [PMID: 39760785 DOI: 10.1007/s00592-024-02438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
AIMS This review examines the challenges posed by Diabetic Foot Infections (DFIs), focusing on the impact of neuropathy, peripheral arterial disease, immunopathy, and the polymicrobial nature of these infections. The aim is to explore the factors contributing to antimicrobial resistance and assess the potential of novel antimicrobial treatments and drug delivery systems in improving patient outcomes. METHOD A comprehensive analysis of existing literature on DFIs was conducted, highlighting the multifactorial pathogenesis and polymicrobial composition of these infections. The review delves into the rise of antimicrobial resistance due to the overuse of antimicrobials, biofilm formation, and microbial genetic adaptability. Additionally, it considers glycemic control, patient adherence, and recurrence rates as contributing factors to treatment failure. Emerging therapies, including new antimicrobial classes and innovative drug delivery systems, were evaluated for their potential efficacy. RESULTS DFIs present unique treatment challenges, with high rates of antimicrobial resistance and poor response to standard therapies. Biofilm formation and the genetic adaptability of pathogens worsen resistance, complicating treatment. Current antimicrobial therapies are further hindered by poor glycemic control and patient adherence, leading to recurrent infections. Novel antimicrobial classes and innovative delivery systems show promise in addressing these challenges by offering more targeted, effective treatments. These new approaches aim to reduce resistance and improve treatment outcomes. CONCLUSION DFIs remain a clinical challenge due to their multifactorial nature and antimicrobial resistance. The development of novel antimicrobials and drug delivery systems is crucial to improving patient outcomes and combating resistance. Future research should focus on enhancing treatment efficacy, reducing resistance, and addressing patient adherence to reduce the burden of DFIs.
Collapse
Affiliation(s)
- Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Ha'il, Ha'il City, Saudi Arabia
| | - Mohd Shahid Khan
- Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Leitão MM, Gonçalves ASC, Borges F, Simões M, Borges A. Polypharmacological strategies for infectious bacteria. Pharmacol Rev 2025; 77:100038. [PMID: 40022769 DOI: 10.1016/j.pharmr.2025.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
Polypharmacological approaches have significant potential for the treatment of various complex diseases, including infectious bacteria-related diseases. Actually, multitargeting agents can achieve better therapeutic effects and overcome the drawbacks of monotherapy. Although multidrug multitarget strategies have demonstrated the ability to inactivate infectious bacteria, several challenges have been pointed out. In this way, multitarget direct ligands approaches appear to be a rational and sustainable strategy to combat antibiotic resistance. By combining different pharmacophores, antibiotic hybrids stand out as a promising application in the field of bacterial infections. These new chemical entities can achieve synergistic interactions that allow to extend the spectrum of action and target multiple pathways. In addition, antibiotic hybrids can reduce the likelihood of resistance development and provide improved chemical stability. It is worth highlighting that despite the efforts of the scientific community to discover new solutions for the most complex diseases, there is a significant lack of studies on biofilm-associated infections. This review describes the different polypharmacological approaches that can be used to treat bacterial infections with a particular focus, whenever possible, on those promoted by biofilms. By exploring these innovative approaches, we aim to inspire further research and progress in the search for effective treatments for infectious bacteria-related diseases, including biofilm-related ones. SIGNIFICANCE STATEMENT: The importance of the proposed topic lies in the escalating challenge of antibiotic resistance, particularly in the context of infectious bacteria-related infections. Polypharmacological approaches, such as antibiotic hybrids, represent innovative strategies to combat bacterial infections. By targeting multiple signaling pathways, these approaches not only enhance therapeutic effect but also reduce the development of resistance while improving the drug's chemical stability. Despite the urgent need to combat bacterial infectious diseases, there is a notable research gap, in particular in biofilm-related ones. This review highlights the critical importance of exploring polypharmacological approaches with the aim of motivating further research and advances in effective treatments for infectious bacteria, including biofilm related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Cruz CG, Sodawalla HM, Mohanakumar T, Bansal S. Extracellular Vesicles as Biomarkers in Infectious Diseases. BIOLOGY 2025; 14:182. [PMID: 40001950 PMCID: PMC11851951 DOI: 10.3390/biology14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that are secreted by all cells into the extracellular space. EVs are involved in cell-to-cell communication and can be found in different bodily fluids (bronchoalveolar lavage fluid, sputum, and urine), tissues, and in circulation; the composition of EVs reflects the physiological condition of the releasing cell. The ability to use EVs from bodily fluids for minimally invasive detection to monitor diseases makes them an attractive target. EVs carry a snapshot of the releasing cell's internal state, and they can serve as powerful biomarkers for diagnosing diseases. EVs also play a role in the body's immune and pathogen detection responses. Pathogens, such as bacteria and viruses, can exploit EVs to enhance their survival and spread and to evade detection by the immune system. Changes in the number or contents of EVs can signal the presence of an infection, offering a potential avenue for developing new diagnostic methods for infectious diseases. Ongoing research in this area aims to address current challenges and the potential of EVs as biomarkers in diagnosing a range of diseases, including infections and infectious diseases. There is limited literature on the development of EVs as diagnostic biomarkers for infectious diseases using existing molecular biology approaches. We aim to address this gap by reviewing recent EV-related investigations in infectious disease studies.
Collapse
Affiliation(s)
- Cinthia Gonzalez Cruz
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Husain M. Sodawalla
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| |
Collapse
|
7
|
Low JM, Ko KKK, Ong RTH, Hon PY, Niduvaje K, Wang X, Tambyah PA, Vasoo S, Ng YPM, Amin Z. Pathogenic bacteria rapidly colonize sinks of a neonatal intensive care unit: results of a prospective surveillance study. J Hosp Infect 2025; 159:71-78. [PMID: 39922499 DOI: 10.1016/j.jhin.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Hospital sinks are known to harbour bacteria with the potential to infect patients. AIM To examine bacterial growth in the sinks of a newly constructed neonatal intensive care unit (NICU) during the transition from an established NICU within the same facility. METHODS This was a prospective study of pathogenic bacterial growth in NICU handwashing sinks before and after the new NICU was occupied. Samples from various sink traps were cultured longitudinally, and comparison was made between the established NICU and the new NICU. FINDINGS Potentially pathogenic bacteria colonized sinks rapidly in the new NICU within 1 month of occupation. During the study period, between 29th June 2021 and 2nd September 2022, 62 samples were collected from 11 sinks, of which 43 (69.4%) tested positive. The mean semi-quantitative bacterial growth score was notably higher in the sink in the milk preparation room compared with the sinks in the patient care area in the new NICU (40.67 vs 1.768; P=0.025). The bacterial profiles in the sink in the new NICU milk preparation room mirrored that of the established NICU, with a predominance of Klebsiella pneumoniae and Enterobacter cloacae complex. In handwashing sinks of both the established NICU and the new NICU, the dominant colonizing pathogen was Burkholderia cepacia complex, followed by Serratia marcescens and Elizabethkingia spp. Cessation of sink use reduced the bioburden of bacteria significantly in the NICU handwashing sink drains. CONCLUSION Handwashing sinks were colonized rapidly with pathogenic bacteria in a newly constructed NICU. More diversified and prolific growth of pathogenic bacteria was noted in the sink in the milk preparation room.
Collapse
Affiliation(s)
- J M Low
- Department of Neonatology, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - K K K Ko
- Department of Microbiology, Singapore General Hospital, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - R T H Ong
- Saw Swee Hock School of Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - P Y Hon
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - K Niduvaje
- Department of Neonatology, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - X Wang
- Department of Neonatology, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore
| | - P A Tambyah
- Infectious Diseases Translational Research Programme, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S Vasoo
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Y P M Ng
- Department of Neonatology, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Z Amin
- Department of Neonatology, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Ahuja S, Zaheer S. Advancements in pathology: Digital transformation, precision medicine, and beyond. J Pathol Inform 2025; 16:100408. [PMID: 40094037 PMCID: PMC11910332 DOI: 10.1016/j.jpi.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025] Open
Abstract
Pathology, a cornerstone of medical diagnostics and research, is undergoing a revolutionary transformation fueled by digital technology, molecular biology advancements, and big data analytics. Digital pathology converts conventional glass slides into high-resolution digital images, enhancing collaboration and efficiency among pathologists worldwide. Integrating artificial intelligence (AI) and machine learning (ML) algorithms with digital pathology improves diagnostic accuracy, particularly in complex diseases like cancer. Molecular pathology, facilitated by next-generation sequencing (NGS), provides comprehensive genomic, transcriptomic, and proteomic insights into disease mechanisms, guiding personalized therapies. Immunohistochemistry (IHC) plays a pivotal role in biomarker discovery, refining disease classification and prognostication. Precision medicine integrates pathology's molecular findings with individual genetic, environmental, and lifestyle factors to customize treatment strategies, optimizing patient outcomes. Telepathology extends diagnostic services to underserved areas through remote digital pathology. Pathomics leverages big data analytics to extract meaningful insights from pathology images, advancing our understanding of disease pathology and therapeutic targets. Virtual autopsies employ non-invasive imaging technologies to revolutionize forensic pathology. These innovations promise earlier diagnoses, tailored treatments, and enhanced patient care. Collaboration across disciplines is essential to fully realize the transformative potential of these advancements in medical practice and research.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
9
|
Moheb N, Mohamed AF, Elbaghdady KZ, Saeed AM, Abu-Elghait M. Monitoring and controlling bacteria in cleanrooms of pharmaceutical plant model: an in vitro study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:3. [PMID: 39621119 DOI: 10.1007/s10661-024-13445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/16/2024] [Indexed: 01/23/2025]
Abstract
This work aims to screen the major species of bacteria distributed in the filling area in one of the new pharmaceutical facilities in the 6th of October city in Egypt and their phylogenic relationship. One hundred percent of collected Gram-positive and Gram-negative isolates of bacteria were sensitive to Levofloxacin. There were five Gram-positive multidrug-resistant (MDR) bacterial isolates and one Gram-negative (MDR) bacterial isolate (three (from personnel), two (from surface), and one (from air)). The five Gram-positive MDR bacterial isolates were resistant to Tobramycin, Gentamicin, Piperacillin, Cefaclor, and Amikacin while the one Gram-negative MDR bacterial isolate was resistant to Ceftazidime, Cefotaxime, Tobramycin, Gentamicin, Piperacillin, Cefoperazone/Sulbactam, Ofloxacin, and Polymixin b. The existence of multidrug-resistant bacteria inside cleanrooms of pharmaceutical plants signifies a life-threatening danger on human through generating contaminated drugs and/or vaccines that undoubtedly harm the consumer's healthiness. The technique of 16SrRNA gene sequencing was used to identify multidrug-resistant bacterial isolates. All tested disinfectants were bactericidal except Dettol that was found to be a bacteriostatic agent and had an anti-biofilm effect. Clorox was the most potent disinfectant that had the least MIC and MBC of 0.0002% and 0.0004%, respectively. Ethanol and Klericide were excellent sanitizing agents. The strongest biofilm formed by Staphylococcus gallinarum strain MN1812 was disrupted by Clorox with a concentration of 0.000098%. Only Dettol with a concentration of 6.3% achieved the highest disruption for the biofilm of Staphylococcus gallinarum strain NM2009. Staphylococcus gallinarum strain MN1812 followed by Bacillus amyloliquefaciens showed the highest adhesion and invasion efficiencies to Caco-cells among the investigated bacterial strains. Klericide and Dettol mixture showed more anti adhesion and invasion effects against Staphylococcus gallinarum strain NM2009 and strain MN1812 and Pseudomonas putida compared to using Klericide alone. Ethanol and Klericide had the least contact time (30 s) against most of the tested bacteria.
Collapse
Affiliation(s)
- Nahla Moheb
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- The Holding Company for Production of Vaccines Sera, and Drug (EGYVAC, VACSERA), Giza, Egypt
| | - Aly Fahmy Mohamed
- The International Center for Advanced Research (ICTAR), Cairo, Egypt
- The Holding Company for Production of Vaccines Sera, and Drug (EGYVAC, VACSERA), Giza, Egypt
| | | | - Ali M Saeed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
10
|
Safarkhani A, Shirkavand F, Abdollahi N, Ahari Oskooie N, Azimi L, Rahbar M, Karimi A. An analysis of the efficacy of universal PCR and BACTEC 9120 BD for identifying bacteremia in pediatrics. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc54. [PMID: 39553298 PMCID: PMC11565594 DOI: 10.3205/dgkh000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Bloodstream infections (BSI) are serious diseases in pediatrics and can increase the rate of morbidity and mortality. Blood culture is time consuming and can have false negative results in some case such as the intracellular or fastidious bacteria. This study aimed to evaluate the PCR against automated blood culture with BACTEC. Materials and methods In this observational cross-sectional study the blood samples of hospitalized children in Mofid Children's Hospital with bacteremia signs from February to May 2023 were enrolled. The causative bacteria in bacteremia were identified by phenotypic and PCR methods. Results 150 blood samples were enrolled to identify the presence of bacteremia by BACTEC and PCR. 60% and 40% of samples have negative and positive results in both methods, respectively. PCR showed 100% sensitivity and specificity in detecting bacteremia compared to BACTEC. A variety of bacteria were identified by phenotypic and molecular methods and coagulase negative Staphylococcus (CONS) is the most of them. Conclusion The rapid and accurate detection of bacterial pathogens with the high sensitivity and specificity compared gold standard method are the most important profits of molecular assay.
Collapse
Affiliation(s)
- Azam Safarkhani
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shirkavand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nafiseh Abdollahi
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahari Oskooie
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Reference Health Laboratories Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Feng RM, Liu Y, Liu ZQ, Wang L, Chen N, Zhao Y, Yi HW. Advances in nucleic acid aptamer-based detection of respiratory virus and bacteria: a mini review. Virol J 2024; 21:237. [PMID: 39350296 PMCID: PMC11443872 DOI: 10.1186/s12985-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
Respiratory pathogens infecting the human respiratory system are characterized by their diversity, high infectivity, rapid transmission, and acute onset. Traditional detection methods are time-consuming, have low sensitivity, and lack specificity, failing to meet the needs of rapid clinical diagnosis. Nucleic acid aptamers, as an emerging and innovative detection technology, offer novel solutions with high specificity, affinity, and broad target applicability, making them particularly promising for respiratory pathogen detection. This review highlights the progress in the research and application of nucleic acid aptamers for detecting respiratory pathogens, discussing their selection, application, potential in clinical diagnosis, and future development. Notably, these aptamers can significantly enhance the sensitivity and specificity of detection when combined with detection techniques such as fluorescence, colorimetry and electrochemistry. This review offers new insights into how aptamers can address the limitations of traditional diagnostic methods and advance clinical diagnostics. It also highlights key challenges and future research directions for the clinical application of nucleic acid aptamers.
Collapse
Affiliation(s)
- Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
- Laboratory Department, the People's Hospital of Yanhu District, Yuncheng, Shanxi, People's Republic of China
| | - Ye Liu
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Zhi-Qiang Liu
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Li Wang
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Nan Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yu Zhao
- Oncology Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Kraihammer M, Petřík M, Rangger C, Gabriel M, Haas H, Nilica B, Virgolini I, Decristoforo C. Automated Production of [ 68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics 2024; 16:1231. [PMID: 39339267 PMCID: PMC11435116 DOI: 10.3390/pharmaceutics16091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
Collapse
Affiliation(s)
- Martin Kraihammer
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-77900 Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
14
|
Gutiérrez-Santana JC, Rosas-Espinosa V, Martinez E, Casiano-García E, Coria-Jiménez VR. Metal Nanoparticle-Based Biosensors for the Early Diagnosis of Infectious Diseases Caused by ESKAPE Pathogens in the Fight against the Antimicrobial-Resistance Crisis. BIOSENSORS 2024; 14:339. [PMID: 39056615 PMCID: PMC11274948 DOI: 10.3390/bios14070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
The species included in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and the genus Enterobacter) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Viridiana Rosas-Espinosa
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Evelin Martinez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Esther Casiano-García
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| |
Collapse
|
15
|
Jasim AS, Mohammed AL, Abbas WH, Ibraheim HK, Gharban HA. Identification of bla OXA-23 gene in resistant Pseudomonas aeruginosa strains isolated from cows and humans in Basra province, Iraq. Vet World 2024; 17:1629-1636. [PMID: 39185049 PMCID: PMC11344103 DOI: 10.14202/vetworld.2024.1629-1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Pseudomonas aeruginosa is an infectious agent of great importance for animals and humans. It causes serious infections that show high resistance to antibiotics. This study investigated the molecular detection of blaOXA-23 gene in antibiotic-resistant P. aeruginosa strains isolated from cows and humans. Materials and Methods In total, 120 samples, comprised 60 from cows (30 milk and 30 nasal discharge) and 60 from their owners (30 urine and 30 sputum), were individually collected, cultured, and tested for P. aeruginosa through molecular analysis targeting the blaOXA-23 gene. P. aeruginosa antibiotic-resistant isolates were identified by performing antibiotic susceptibility testing and detecting biofilm formation. Results In total, 74.17% positive P. aeruginosa isolates, including 66.67% and 81.67% for cows and humans, respectively. Subsequently, positive cow isolates were detected in 60% of milk samples and 73.33% of nasal discharge samples; while positive human isolates were detected in 76.67% of urine samples and 86.66% of sputum samples. Targeting blaOXA-23 gene, 58.43% of cultured isolates were positive for P. aeruginosa by polymerase chain reaction. Respectively, positive isolates were detected in 66.67% and 45.46% of cow milk and nasal discharges as well as in 60.87% and 61.54% of human urine and sputum. The antibiotic susceptibility test revealed that all isolates were resistant to all applied antibiotics, particularly imipenem. Results of biofilm formation revealed 67.31% total positives, including 51.43% strong, 34.285% moderate, and 14.285% weak reactions. In addition, although values of the total positive cows and humans differed insignificantly, total positives showed insignificant variation between values of milk and nasal discharges of cows as well as between urine and sputum of humans; however, significant differences were identified in the distribution of strong, moderate, and weak positivity of these samples. Conclusion Antibiotic overuse contributes extensively to increasing the prevalence of resistant P. aeruginosa isolates carrying the blaOXA-23 gene in both cows and humans. Furthermore, studies in other Iraqi areas are necessary to support our findings. The main limitations include that the number of tested samples is relatively low, and there is a need to use a large number of samples from different sources. Also, the current methods for detection of resistant isolates are still culture-based approaches.
Collapse
Affiliation(s)
- Alyaa Sabti Jasim
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basra, Iraq
| | - Abeer Laily Mohammed
- Department of Microbiology, Al-Zahraa College of Medicine, University of Basrah, Basra, Iraq
| | - Wameedh Hashim Abbas
- Department of Microbiology, Al-Zahraa College of Medicine, University of Basrah, Basra, Iraq
| | - Hanaa Khaleel Ibraheim
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basra, Iraq
| | - Hasanain A.J. Gharban
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq
| |
Collapse
|
16
|
Knol CWJ, Stob PH, Woerdenbag HJ. Development and Implementation of an Ultraviolet-Dye-Based Qualification Procedure for Hand Washing and Disinfection to Improve Quality Assurance of Pharmacy Preparations and Compounding, Especially in Cleanrooms: A Pilot Study. PHARMACY 2024; 12:73. [PMID: 38804465 PMCID: PMC11130823 DOI: 10.3390/pharmacy12030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Even though, nowadays, most medicines are manufactured industrially, patients may have medical needs that can only be met by a tailor-made approach. This requires the availability of pharmacy preparations made under Good Manufacturing Practice (GMP) conditions. An efficient hand hygiene practice is essential herewith, especially if sterile products that are prepared in a cleanroom are concerned. The effectiveness of hand washing and hand disinfection procedures greatly relies on adequate training. We carried out an observational cross-sectional pilot study aimed at optimizing hand hygiene training with objective and measurable quality assessments using an ultraviolet (UV) dye. Practical acceptance criteria for qualifying personnel through this method were set and evaluated. In total, 25 GMP-qualified cleanroom operators washed and disinfected their hands with UV dye hand wash lotion and UV dye hand alcohol, respectively. To obtain a proof-of-concept, the results were judged based on adherence to the WHO six-step protocol and associated acceptance criteria. Commonly missed areas were brought to light, and the influence of procedure duration was investigated. UV-dye-based assessments appeared to be more valuable in hand disinfection than in hand washing. In both procedures, the back of the hands and the thumbs were frequently missed. This underpins the need for enhanced and repeated education on hand washing and disinfection. Additionally, a dry skin gave rise to extra cleaning challenges. From this pharmacy practice pilot study with a focus on pharmaceutical product care, it may be concluded that the application of UV-dye-based assessments offers valuable insights for pharmacists to optimize hand hygiene, thereby increasing the safety of tailor-made medicines and on-site preparations.
Collapse
Affiliation(s)
- Catharina W. J. Knol
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Fagron Sterile Services Nederland, Dieselstraat 3, 7903 AR Hoogeveen, The Netherlands;
| | - Paul H. Stob
- Fagron Sterile Services Nederland, Dieselstraat 3, 7903 AR Hoogeveen, The Netherlands;
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
17
|
Lokhande AS, Maurya V, Rani K, Parashar P, Gaind R, Tandon V, Devarajan PV. Polydispersity-mediated high efficacy of an in-situ aqueous nanosuspension of PPEF.3HCl in methicillin resistant Staphylococcus aureus sepsis model. Int J Pharm 2024; 655:123982. [PMID: 38460770 DOI: 10.1016/j.ijpharm.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Recently, World Health Organization declared antimicrobial resistance as the third greatest threat to human health. Absence of known cross-resistance, new class, new target, and a new mode of action are few major strategies being undertaken by researches to combat multidrug resistant pathogen. PPEF.3HCl, a bisbenzimidazole was developed as highly potent antibacterial agent against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, targeting topoisomerase IA. The present work encompasses a radical on-site generation of In-situ nanosuspension of PPEF.3HCl with enhanced efficacy against methicillin resistant S. aureus in septicemia model. We have generated instantaneously a PPEF.3HCl nanosuspension (IsPPEF.3HCl-NS) by mixing optimized monophasic PPEF.3HCl preconcentrate in propylene glycol into an aqueous medium comprising tween 80 as stabilizer. The IsPPEF.3HCl-NS showed precipitation efficiency of > 90 %, average particle size < 500 nm, retained upto 5 h, a negative zeta potential and bi/trimodal particle size distribution. Differential scanning calorimetry, X-ray diffraction confirmed partial amorphization and transmission electron microscopy revealed spherical particles. IsPPEF.3HCl-NS was non-hemolytic and exhibited good stability in serum. More significantly, it exhibited a ∼ 1.6-fold increase in macrophage uptake compared to free PPEF.3HCl in the RAW 264.7 macrophage cell line. Confocal microscopy revealed accumulation of IsPPEF.3HCl-NS within the lysosomal compartment and cell cytosol, proposing high efficacy. In terms of antimicrobial efficacy, IsPPEF.3HCl-NS outperforms free PPEF.3HCl against clinical methicillin sensitive and resistant S. aureus strains. In a pivotal experiment, IsPPEF.3HCl-NS exhibited over 83 % survival at 8 mg/kg.bw and an impressive reduction of ∼ 4-5 log-fold in bacterial load, primarily in the kidney, liver and spleen of septicemia mice. IsPPEF.3HCl-NS prepared by the In-situ approach, coupled with enhanced intramacrophage delivery and superior efficacy, positions IsPPEF.3HCl-NS as a pioneering and highly promising formulation in the battle against antimicrobial resistance.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Vikas Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Komal Rani
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajni Gaind
- Vardhaman Medical College Hospital, Safdarjung Hospital, New Delhi 110029, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
18
|
Akhlaghi H, Javan AJ, Chashmi SHE. Helicobacter pullorum and Helicobacter canadensis: Etiology, pathogenicity, epidemiology, identification, and antibiotic resistance implicating food and public health. Int J Food Microbiol 2024; 413:110573. [PMID: 38246022 DOI: 10.1016/j.ijfoodmicro.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Nowadays, it is well-established that the consumption of poultry meat, especially chicken meat products has been drastically increasing. Even though more attentions are being paid to the major foodborne pathogens, it seems that scientists in the area of food safety and public health would prefer tackling the minor food borne zoonotic emerging or reemerging pathogens, namely Helicobacter species. Recently, understanding the novel aspects of zoonotic Enterohepatic Helicobacter species, including pathogenesis, isolation, identification, and genomic features is regarded as a serious challenge. In this regard, considerable attention is given to emerging elusive zoonotic Enterohepatic Helicobacter species, comprising Helicobacter pullorum and Helicobacter canadensis. In conclusion, the current review paper would attempt to elaborately summarize and somewhat compare the etiology, pathogenesis, cultivation process, identification, genotyping, and antimicrobial resistance profile of both H. pullorum and H. Canadensis. Further, H. pullorum has been introduced as the most significant food borne pathogen in chicken meat products.
Collapse
Affiliation(s)
- Hosein Akhlaghi
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Ashkan Jebelli Javan
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | | |
Collapse
|
19
|
Ramasco F, Méndez R, Suarez de la Rica A, González de Castro R, Maseda E. Sepsis Stewardship: The Puzzle of Antibiotic Therapy in the Context of Individualization of Decision Making. J Pers Med 2024; 14:106. [PMID: 38248807 PMCID: PMC10820263 DOI: 10.3390/jpm14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The main recent change observed in the field of critical patient infection has been universal awareness of the need to make better use of antimicrobials, especially for the most serious cases, beyond the application of simple and effective formulas or rigid protocols. The increase in resistant microorganisms, the quantitative increase in major surgeries and interventional procedures in the highest risk patients, and the appearance of a significant number of new antibiotics in recent years (some very specifically directed against certain mechanisms of resistance and others with a broader spectrum of applications) have led us to shift our questions from "what to deal with" to "how to treat". There has been controversy about how best to approach antibiotic treatment of complex cases of sepsis. The individualized and adjusted dosage, the moment of its administration, the objective, and the selection of the regimen are pointed out as factors of special relevance in a critically ill patient where the frequency of resistant microorganisms, especially among the Enterobacterales group, and the emergence of multiple and diverse antibiotic treatment alternatives have made the appropriate choice of antibiotic treatment more complex, requiring a constant updating of knowledge and the creation of multidisciplinary teams to confront new infections that are difficult to treat. In this article, we have reviewed the phenomenon of the emergence of resistance to antibacterials and we have tried to share some of the ideas, such as stewardship, sparing carbapenems, and organizational, microbiological, pharmacological, and knowledge tools, that we have considered most useful and effective for individualized decision making that takes into account the current context of multidrug resistance. The greatest challenge, therefore, of decision making in this context lies in determining an effective, optimal, and balanced empirical antibiotic treatment.
Collapse
Affiliation(s)
- Fernando Ramasco
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain; (R.M.); (A.S.d.l.R.)
| | - Rosa Méndez
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain; (R.M.); (A.S.d.l.R.)
| | - Alejandro Suarez de la Rica
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain; (R.M.); (A.S.d.l.R.)
| | - Rafael González de Castro
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de León, 24071 León, Spain;
| | - Emilio Maseda
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario Quirón Sur Salud, 28922 Madrid, Spain;
| |
Collapse
|
20
|
Wang L, Zhang T, Huo J, Wang Y, Lu Y, Zhu X. Rapid and specific detection of Enterococcus faecium with an isothermal amplification and lateral flow strip combined method. Arch Microbiol 2023; 206:28. [PMID: 38112880 DOI: 10.1007/s00203-023-03758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Enterococcus faecium is responsible for a highly contagious, drug-resistant nosocomial infection that often causes serious illness. In this study, a rapid and sensitive RPA-LFS (recombinase polymerase amplification-lateral flow strip) method for the detection of E. faecium was established based on specific primers and probes designed using the ddl gene. To verify the specificity and sensitivity of the method, 26 specific strains and 100-106 CFU/μL E. faecium were selected for detection. The results show that the proposed method can specifically detect E. faecium, and the minimum detection limit is 100 CFU/μL. To compare the clinical application of the method with qPCR, 181 clinical samples were collected for testing. RPA-LFS and qPCR had the same practical applicability, and 61 parts of E. faecium were detected in 183 clinical samples. The methods developed in this study not only have the advantages of rapid sensitivity and specificity but also meet the needs of remote areas with scarce medical resources.
Collapse
Affiliation(s)
- Lei Wang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Ting Zhang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Juan Huo
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Yan Wang
- Department of Oncology, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
- Department of Laboratory Medicine, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
| | - Yingzhi Lu
- Department of Oncology, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
- Department of Laboratory Medicine, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
| | - Xinming Zhu
- Department of Laboratory Medicine, Lianyungang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Lianyungang, China.
| |
Collapse
|
21
|
Goyal PA, Bankar NJ, Mishra VH, Borkar SK, Makade JG. Revolutionizing Medical Microbiology: How Molecular and Genomic Approaches Are Changing Diagnostic Techniques. Cureus 2023; 15:e47106. [PMID: 38022057 PMCID: PMC10646819 DOI: 10.7759/cureus.47106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Molecular and genomic approaches have revolutionized medical microbiology by offering faster and more accurate diagnostic techniques for infectious diseases. Traditional methods, which include culturing microbes and biochemical testing, are time-consuming and may not detect antibiotic-resistant strains. In contrast, molecular and genomic methods, including polymerase chain reaction (PCR)-based techniques and whole-genome sequencing, provide rapid and precise detection of pathogens, early-stage diseases, and antibiotic-resistant strains. These approaches have advantages such as high sensitivity and specificity, the potential for targeted therapies, and personalized medicine. However, implementing molecular and genomic techniques faces challenges related to cost, equipment, expertise, and data analysis. Ethical and legal considerations regarding patient privacy and genetic data usage also arise. Nonetheless, the future of medical microbiology lies in the widespread adoption of molecular and genomic approaches, which can lead to improved patient outcomes and the identification of antibiotic-resistant strains. Continued advancements, education, and exploration of ethical implications are necessary to fully harness the potential of molecular and genomic techniques in medical microbiology.
Collapse
Affiliation(s)
- Poyasha A Goyal
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Nandkishor J Bankar
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Vaishnavi H Mishra
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Sonali K Borkar
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Jagadish G Makade
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Medical Sciences(DU), Wardha, IND
| |
Collapse
|
22
|
Mohammadi Ebli F, Heshmatipour Z, Daneshjou K, Siadat SD. Simultaneous Genetically Detection of Streptococcuspyogenes, Streptococcuspneumoniae and Haemophilusinfluenzae in Patients with Treatment-Resistant Respiratory Infection. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:356-362. [PMID: 37942203 PMCID: PMC10628374 DOI: 10.30699/ijp.2023.1991067.3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 11/10/2023]
Abstract
Background & Objective Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus pyogenes are among the most important causes of infection in human. Inventing rapid methods to identify these species can help in providing appropriate and effective treatment options. Therefore, the current study aimed to develop a multiplex touch-down PCR method to identify rapidly the aforementioned species patients' sputum samples, simultaneously. Methods A total of 50 sputum samples of patients with respiratory infections resistant to treatment were collected. After DNA extraction and primer design, the complete capsule (CAP) region II, capsular polysaccharide biosynthesis (cpsA) and the structural regulator of transcription (spy) genes were amplified for detecting H. influenzae, S. pneumoniae and S. pyogenes by multiplex touch-down PCR. Results Among 50 samples prepared from patients with different diseases, 27 samples were positive for amplified genes. The frequency of presence of pathogens in the collected samples included 14% H. influenzae, 20% S. pneumoniae and 20% S. pyogenes. Also, in some patients, the simultaneous presence of two or three pathogens were observed. Conclusion In general, it can be concluded that the PCR touchdown method developed in the present study is an effective and fast method for the simultaneous identification of H. influenzae, S. pneumoniae and S. pyogenes pathogens in clinical samples of patients.
Collapse
Affiliation(s)
- Farzad Mohammadi Ebli
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Daneshjou
- Department of Pediatrics, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
Salman MM, Nawaz M, Yaqub T, Mushtaq MH. Exploring the Milk Microbiota of Healthy and Mastitic Nili Ravi Buffalo Using 16S rRNA Gene Base Metagenomic Analysis. Animals (Basel) 2023; 13:2298. [PMID: 37508075 PMCID: PMC10376726 DOI: 10.3390/ani13142298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Nili Ravi, a buffalo breed from Pakistan, significantly contributes to the dairy industry. Mastitis is one of the major challenges affecting milk production in this breed. The objective of the current study was to identify the bacterial communities and diversity in healthy and mastitic milk of this breed. Milk samples (n = 14) were collected from Nili Ravi buffaloes with different udder health statuses, i.e., healthy (5), subclinical mastitis (4), and clinical mastitis (5). The DNAs were extracted, subjected to partial amplification of 16S rDNA (V3 and V4 regions), and sequenced using the Illumina platform. The results revealed variations in the bacterial communities in the milk of animals with different udder health statuses. Proteobacteria was the predominant phylum in the healthy group, while clinical and subclinical mastitis milk had a higher abundance of Firmicutes. Dominant bacterial genera in the healthy group were Streptococcus (11.60%), Herbaspirillum (7.65%), and Staphylococcus (4.70%), whereas the clinical mastitis group was dominated by Streptococcus (33.96%), Staphylococcus (7.87%), and Corynebacterium (2.68%), and the subclinical mastitis group was dominated by Bacillus (15.70%), Corynebacterium (6.70%), and Staphylococcus (6.58%). Assignment of operational taxonomic units at the species level resulted in most species being assigned to uncultured or unknown bacteria or remaining unassigned. Alpha diversity indices indicated lower microbial diversity in the clinical mastitis group, while beta diversity indices showed a scattered pattern of sample clustering in PCA plots among different groups. It is concluded that bacterial diversity in the milk of Nili Ravi buffaloes suffering from clinical mastitis is lower compared to healthy and subclinical mastitis cases. It is concluded that the variations in the microbiota of healthy and mastitic milk may be further investigated and exploited as signature microbes associated with the udder health status of Nili Ravi buffalo.
Collapse
Affiliation(s)
- Mian Muhammad Salman
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Hassan Mushtaq
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
24
|
Mancuso G, Midiri A, Gerace E, Marra M, Zummo S, Biondo C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023; 12:pathogens12040623. [PMID: 37111509 PMCID: PMC10145414 DOI: 10.3390/pathogens12040623] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, occurring in both community and healthcare settings. Although the clinical symptoms of UTIs are heterogeneous and range from uncomplicated (uUTIs) to complicated (cUTIs), most UTIs are usually treated empirically. Bacteria are the main causative agents of these infections, although more rarely, other microorganisms, such as fungi and some viruses, have been reported to be responsible for UTIs. Uropathogenic Escherichia coli (UPEC) is the most common causative agent for both uUTIs and cUTIs, followed by other pathogenic microorganisms, such as Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, and Staphylococcus spp. In addition, the incidence of UTIs caused by multidrug resistance (MDR) is increasing, resulting in a significant increase in the spread of antibiotic resistance and the economic burden of these infections. Here, we discuss the various factors associated with UTIs, including the mechanisms of pathogenicity related to the bacteria that cause UTIs and the emergence of increasing resistance in UTI pathogens.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Maria Marra
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
25
|
Synergistic Antimicrobial Activity of Silver Nanoparticles with an Emergent Class of Azoimidazoles. Pharmaceutics 2023; 15:pharmaceutics15030926. [PMID: 36986787 PMCID: PMC10053004 DOI: 10.3390/pharmaceutics15030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The combination of two or more agents capable of acting in synergy has been reported as a valuable tool to fight against pathogens. Silver nanoparticles (AgNPs) present a strong antimicrobial action, although their cytotoxicity for healthy cells at active concentrations is a major concern. Azoimidazole moieties exhibit interesting bioactivities, including antimicrobial activity. In this work, a class of recently described azoimidazoles with strong antifungal activity was conjugated with citrate or polyvinylpyrrolidone-stabilized AgNPs. Proton nuclear magnetic resonance was used to confirm the purity of the compounds before further tests and atomic absorption spectroscopy to verify the concentration of silver in the prepared dispersions. Other analytical techniques elucidate the morphology and stability of AgNPs and corresponding conjugates, namely ultraviolet–visible spectrophotometry, scanning transmission electron microscopy and dynamic light scattering analysis. The synergistic antimicrobial activity of the conjugates was assessed through a checkerboard assay against yeasts (Candida albicans and Candida krusei) and bacteria (Staphylococcus aureus and Escherichia coli). The conjugates showed improved antimicrobial activity against all microorganisms, in particular towards bacteria, with concentrations below their individual minimal inhibitory concentration (MIC). Furthermore, some combinations were found to be non-cytotoxic towards human HaCaT cells.
Collapse
|
26
|
Haslund-Gourley BS, Wigdahl B, Comunale MA. IgG N-glycan Signatures as Potential Diagnostic and Prognostic Biomarkers. Diagnostics (Basel) 2023; 13:1016. [PMID: 36980324 PMCID: PMC10047871 DOI: 10.3390/diagnostics13061016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
IgG N-glycans are an emerging source of disease-specific biomarkers. Over the last decade, the continued development of glycomic databases and the evolution of glyco-analytic methods have resulted in increased throughput, resolution, and sensitivity. IgG N-glycans promote adaptive immune responses through antibody-dependent cellular cytotoxicity (ADCC) and complement activation to combat infection or cancer and promote autoimmunity. In addition to the functional assays, researchers are examining the ability of protein-specific glycosylation to serve as biomarkers of disease. This literature review demonstrates that IgG N-glycans can discriminate between healthy controls, autoimmune disease, infectious disease, and cancer with high sensitivity. The literature also indicates that the IgG glycosylation patterns vary across disease state, thereby supporting their role as specific biomarkers. In addition, IgG N-glycans can be collected longitudinally from patients to track treatment responses or predict disease reoccurrence. This review focuses on IgG N-glycan profiles applied as diagnostics, cohort discriminators, and prognostics. Recent successes, remaining challenges, and upcoming approaches are critically discussed.
Collapse
Affiliation(s)
- Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
27
|
Gea-Izquierdo E, Gil-de-Miguel Á, Rodríguez-Caravaca G. Legionella pneumophila Risk from Air–Water Cooling Units Regarding Pipe Material and Type of Water. Microorganisms 2023; 11:microorganisms11030638. [PMID: 36985212 PMCID: PMC10053303 DOI: 10.3390/microorganisms11030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Legionellosis is a respiratory disease related to environmental health. There have been manifold studies of pipe materials, risk installations and legionellosis without considering the type of transferred water. The objective of this study was to determine the potential development of the causative agent Legionella pneumophila regarding air–water cooling units, legislative compliance, pipe material and type of water. Forty-four hotel units in Andalusia (Spain) were analysed with respect to compliance with Spanish health legislation for the prevention of legionellosis. The chi-square test was used to explain the relationship between material–water and legislative compliance, and a biplot of the first two factors was generated. Multiple correspondence analysis (MCA) was performed on the type of equipment, legislative compliance, pipe material and type of water, and graphs of cases were constructed by adding confidence ellipses by categories of the variables. Pipe material–type of water (p value = 0.29; p < 0.05) and legislative compliance were not associated (p value = 0.15; p < 0.05). Iron, stainless steel, and recycled and well water contributed the most to the biplot. MCA showed a global pattern in which lead, iron and polyethylene were well represented. Confidence ellipses around categories indicated significant differences among categories. Compliance with Spanish health legislation regarding the prevention and control of legionellosis linked to pipe material and type of water was not observed.
Collapse
Affiliation(s)
- Enrique Gea-Izquierdo
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Maria Zambrano Program, European Union, Spain
- Correspondence:
| | - Ángel Gil-de-Miguel
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gil Rodríguez-Caravaca
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Department of Preventive Medicine, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| |
Collapse
|
28
|
Biondo C. New Insights into Bacterial Pathogenesis. Pathogens 2022; 12:pathogens12010038. [PMID: 36678386 PMCID: PMC9860650 DOI: 10.3390/pathogens12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Pathogenicity, or the ability of a microorganism to cause disease, depends on several factors, among which the immune status of the host and the microbial species involved in the exposure play a key role [...].
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, Via C. Valeria n.1, Policlinico Universitario "G. Martino", Gazzi, 98125 Messina, Italy
| |
Collapse
|
29
|
Lin ES, Huang CY. Cytotoxic Activities and the Allantoinase Inhibitory Effect of the Leaf Extract of the Carnivorous Pitcher Plant Nepenthes miranda. PLANTS (BASEL, SWITZERLAND) 2022; 11:2265. [PMID: 36079647 PMCID: PMC9460348 DOI: 10.3390/plants11172265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|