1
|
Ribas Freitas AR, Schwartz DA, Lima Neto AS, Rodrigues R, Cavalcanti LPG, Alarcón-Elbal PM. Oropouche Virus (OROV): Expanding Threats, Shifting Patterns, and the Urgent Need for Collaborative Research in Latin America. Viruses 2025; 17:353. [PMID: 40143283 PMCID: PMC11945620 DOI: 10.3390/v17030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Recent outbreaks of Oropouche virus (OROV) in Latin America demonstrate shifting epidemiological trends, with increasing clinical severity and geographic expansion driven by environmental and anthropogenic factors, many of which remain uncertain. Viral evolution with new reassortant strains, changes in vectors, environmental degradation, and human activities have been postulated as factors that have facilitated its spread into new areas beyond the Amazon Basin. Multiple reports starting in July 2024 of pregnant women with Oropouche fever developing vertical infections and adverse perinatal outcomes, including placental infection, stillbirth, and fetal infections with microcephaly and malformation syndromes, have reinforced the public health significance of this disease. Here, we describe the evidence surrounding this re-emerging epidemic threat, examine these changes, and propose specific strategies for enhanced surveillance and a public health response.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro María Alarcón-Elbal
- Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Faculty of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc 7, Alfara del Patriarca, 45115 Valencia, Spain;
| |
Collapse
|
2
|
González MA, Ruiz-Arrondo I, Bravo-Barriga D, Cervera-Acedo C, Santibáñez P, Oteo JA, Miranda MÁ, Barceló C. Surveillance and screening of Stomoxyinae flies from Mallorca Island (Spain) reveal the absence of selected pathogens but confirm the presence of the endosymbiotic bacterium Wolbachia pipientis. Res Vet Sci 2024; 171:105206. [PMID: 38493661 DOI: 10.1016/j.rvsc.2024.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Adult brachycera biting flies can significantly impact livestock through both direct effects (reduction of food intake, disturbance, painful bites, and blood loss) and indirect effects (pathogen transmission), leading to substantial economic losses and production damage. This study aimed to assess the presence of blood-sucking flies in six mixed-animal farm environments on the island of Mallorca (Balearic Islands, Spain) by employing multiple trapping methods. Additionally, distribution maps of brachycera biting fly species recorded in Spain were created, based on data extracted thorough review of scientific literature and citizen digital databases. Investigation of several pathogens, including equine infectious anemia virus (EIAV), Anaplasmataceae bacteria, and piroplasm protozoa, was carried out using different PCR targets (18S rRNA, 16S rRNA, groESL, and tat genes). Citizen science databases and literature review corroborated the consistent distribution trend for two Stomoxyinae species, underscoring the importance of citizen collaboration as a complement to traditional entomological surveillance. Our study confirmed the presence of two biting Stomoxyinae species: the prevalent stable fly Stomoxys calcitrans across all sampled farms, and the horn fly Haematobia irritans, which turned out to be less abundant. DNA barcoding techniques validated the identification of the two species. Neither EIAV nor bacterial/protozoan pathogens were detected using the selected PCR targets in either fly species. However, Wolbachia pipientis (clustered in the supergroup A together with the only sequence of W. pipientis from the USA) was identified through PCR targeting 16S rRNA, groESL and wsp genes in all pools of H. irritans (n = 13) collected from two of the examined farms. This study represents the first attempt to investigate pathogens in Stomoxyinae biting flies in Spain. The discovery of the endosymbiotic Wolbachia organism in H. irritans represents the first record in Spain and the second from Europe. This finding holds significant implications for future research on the applications of this bacterium in biocontrol programs.
Collapse
Affiliation(s)
- Mikel A González
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Seville, Spain; CIBER de Epidemiología y Salud Pública (CIBER ESP), Madrid, Spain.
| | - Ignacio Ruiz-Arrondo
- Department of Animal Pathology, Faculty of Veterinary Sciences, Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain; Center for Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain.
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Ctra.Madrid-Cadiz, Km.396, 14014 Córdoba, Spain.
| | - Cristina Cervera-Acedo
- Center for Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain.
| | - Paula Santibáñez
- Center for Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain.
| | - José A Oteo
- Center for Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain.
| | - Miguel Á Miranda
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), University of the Balearic Islands, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain; Applied Zoology and Animal Conservation research group (ZAP), University of the Balearic Islands, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.
| | - Carlos Barceló
- Applied Zoology and Animal Conservation research group (ZAP), University of the Balearic Islands, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
3
|
Bravo-Barriga D, González MA, Parreira R, Frontera E, Huerta H, Alarcón-Elbal PM. Shedding light on the controversial taxonomic status of Culicoides jamaicensis and Culicoides paolae (Diptera: Ceratopogonidae): an overseas trip among continents. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:944-954. [PMID: 37335073 DOI: 10.1093/jme/tjad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are small bloodsucking flies that act as vectors for various pathogens of medical and veterinary importance. This study aimed to examine, using a comprehensive approach, the controversial taxonomic status of 2 Culicoides species that are currently distributed in the Neotropical (Culicoides jamaicensis Edwards) and Palearctic (Culicoides paolae Boorman) areas and possess unique and distinctive features. Previous investigations based on morphological analysis have suggested that these 2 species may be synonyms. Our work updated the current geographical distribution of both species and analyzed new specimens from different geographic origins, together with publicly available sequences. We used 2 universal genetic markers (COI and 28S) to test this hypothesis. Our study reveals evidence that C. paolae and C. jamaicensis belong to the same species due to the following statements: (i) similar morphological features; (ii) low interspecific genetic variation; (iii) association with a single genetic cluster; (iv) inclusion within the subgenus Drymodesmyia, which has only been recorded in the New World; and (v) occurrence in habitats with moderate temperatures. We recommend that European and African specimens of C. paolae be considered from now on as C. jamaicensis. Our comprehensive approach shed new light on the taxonomic status of these 2 Culicoides species and has implications for future studies on their biology and ecology.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura (Uex), 10003 Cáceres, Spain
| | | | - Ricardo Parreira
- Institute of Hygiene and Tropical Medicine (IHMT) - NOVA University of Lisbon, 1349-008 Lisboa, Portugal
- Global Health and Tropical Medicine (GHTM), Lisboa, Portugal
| | - Eva Frontera
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura (Uex), 10003 Cáceres, Spain
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, 01480 Ciudad de México, Mexico
| | - Pedro María Alarcón-Elbal
- Laboratorio de investigación de Entomología, Departamento de Zoología, Facultad de Ciencias Biológicas, Bloque B, Universidad de Valencia, 46100 Burjasot, Spain
| |
Collapse
|
4
|
Morchón R, Bueno-Marí R, Bravo-Barriga D. Biology, Control and Zoonotic Role of Disease Vectors. Pathogens 2023; 12:797. [PMID: 37375487 DOI: 10.3390/pathogens12060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Vector-borne diseases result from the transmission of pathogens, including bacteria, parasites or viruses, by different hematophagous insects such as mosquitoes, phlebotomine sandflies, black flies, ticks, fleas, lice and triatomines, among others [...].
Collapse
Affiliation(s)
- Rodrigo Morchón
- Zoonotic Diseases and One Health Group, IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Rubén Bueno-Marí
- Center of Excellence in Vector Control for Europe, Rentokil Initial, 46960 Valencia, Spain
- Parasites & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Bravo-Barriga
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain
| |
Collapse
|
5
|
Navarro Mamani DA, Ramos Huere H, Vera Buendia R, Rojas M, Chunga WA, Valdez Gutierrez E, Vergara Abarca W, Rivera Gerónimo H, Altamiranda-Saavedra M. Would Climate Change Influence the Potential Distribution and Ecological Niche of Bluetongue Virus and Its Main Vector in Peru? Viruses 2023; 15:v15040892. [PMID: 37112872 PMCID: PMC10145190 DOI: 10.3390/v15040892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Bluetongue virus (BTV) is an arbovirus that is transmitted between domestic and wild ruminants by Culicoides spp. Its worldwide distribution depends on competent vectors and suitable environmental ecosystems that are becoming affected by climate change. Therefore, we evaluated whether climate change would influence the potential distribution and ecological niche of BTV and Culicoides insignis in Peru. Here, we analyzed BTV (n = 145) and C. insignis (n = 22) occurrence records under two shared socioeconomic pathway scenarios (SSP126 and SSP585) with five primary general circulation models (GCMs) using the kuenm R package v.1.1.9. Then, we obtained binary presence–absence maps and represented the risk of transmission of BTV and niche overlapping. The niche model approach showed that north and east Peru presented suitability in the current climate scenario and they would have a decreased risk of BTV, whilst its vector would be stable and expand with high agreement for the five GCMs. In addition, its niche overlap showed that the two niches almost overlap at present and would completely overlap with one another in future climate scenarios. These findings might be used to determine the areas of highest priority for entomological and virological investigations and surveillance in order to control and prevent bluetongue infections in Peru.
Collapse
Affiliation(s)
- Dennis A. Navarro Mamani
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- Correspondence:
| | - Heydi Ramos Huere
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Renzo Vera Buendia
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Miguel Rojas
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Wilfredo Arque Chunga
- Laboratorio de Referencia Nacional de Metaxenicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima 15001, Peru
| | - Edgar Valdez Gutierrez
- Laboratorio de Sanidad Animal “M.V. Atilio Pacheco Pacheco”, Escuela Profesional de Zootecnia, Universidad Nacional San Antonio Abad del Cusco, Cusco 08681, Peru
| | - Walter Vergara Abarca
- Laboratorio de Sanidad Animal “M.V. Atilio Pacheco Pacheco”, Escuela Profesional de Zootecnia, Universidad Nacional San Antonio Abad del Cusco, Cusco 08681, Peru
| | - Hermelinda Rivera Gerónimo
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Mariano Altamiranda-Saavedra
- Grupo de Investigación Bioforense, Tecnológico de Antioquia Institución Universitaria, Medellín 050005, Colombia
| |
Collapse
|