1
|
Olu-Taiwo MA, Egyir B, Owusu-Nyantakyi C, Forson AO, Opintan JA. Molecular characterization of multidrug-resistant Escherichia coli in the Greater Accra Region, Ghana: a 'One Health' approach. ONE HEALTH OUTLOOK 2025; 7:31. [PMID: 40420217 DOI: 10.1186/s42522-025-00154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND "One Health," a concept that highlights the need to bring on board multiple players and actors together to address major health problems, has been proposed to be effective in data gathering to mitigate the menace of antimicrobial drug resistance (AMR). Genomic data on extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) across humans, animals, and the environment are limited in low- and middle-income countries (LMICs), including Ghana. OBJECTIVE This study determined the prevalence and patterns of AMR in E. coli from diverse sources, and characterized AMR genes, sequence types (STs), and plasmid replicon types in ESBL-EC. METHODOLOGY In a cross-sectional study, we randomly collected 1500 specimens from healthy humans, cattle, pigs, lettuce, spring onions, pork, beef, and soil samples, between January 2022 - April 2023. E. coli was isolated by routine culture and confirmed by MALDI-TOF MS. E. coli isolates were screened for their susceptibility against 13 antimicrobial agents and ESBL-production. ESBL-EC isolates were whole-genome sequenced (WGS), and in silico analysis was used to determine AMR genes, sequence types (STs), and plasmid replicon types. RESULT Of the 1500 specimens from diverse sources cultured, 140 (9.3%) were positive for E. coli. No E. coli was isolated from lettuce, spring onions, and pork. Fifty (35.7%) E. coli isolates were resistant to three or more of the antimicrobials tested, and 30 (21.4%) were ESBL-EC. The proportion of ESBL-EC identified in healthy humans were 14 (20%), cattle 9 (22.5%), pigs 3 (15%), beef 1 (50%) and soil 3 (37.5%). ESBL-EC isolates were highly resistant to ampicillin (100%), cefuroxime (100%), ciprofloxacin (53.6%), and tetracycline (58.2%). However, all ESBL-EC were susceptible to meropenem. Commonly detected AMR genes were blaTEM-1B (32%), tetA (48%) and sul2 (32%), with majority recovered from healthy human and soil samples. The dominant sequence types found were 12% (3) for ST10, ST 9312, ST 206, and ST 4151. The prevalent plasmid replicon types detected were IncFIB (Apoo1918) (40%) and IncFII (pCoo) (36%). CONCLUSION Within the metropolis surveyed, we identified MDR ESBL-EC harbouring various AMR genes and plasmid replicon types with diverse E. coli sequence types in healthy humans, animals, and the environment. The detection of blaCTX-M-15 in agricultural soil isolate is worrisome, emphasizing the need for a "One Health" approach in combating AMR.
Collapse
Affiliation(s)
- Michael A Olu-Taiwo
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon Accra, Ghana.
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | | | - Akua Obeng Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Japheth A Opintan
- Department of Medical Microbiology, Ghana Medical School, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| |
Collapse
|
2
|
Li M, Jian Q, Ye X, Jing M, Wu J, Wu Z, Ruan Y, Long X, Zhang R, Ren H, Sun J, Liu Y, Liao X, Lian X. Mechanisms of mepA Overexpression and Membrane Potential Reduction Leading to Ciprofloxacin Heteroresistance in a Staphylococcus aureus Isolate. Int J Mol Sci 2025; 26:2372. [PMID: 40076991 PMCID: PMC11901101 DOI: 10.3390/ijms26052372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Heteroresistance has seriously affected the evaluation of antibiotic efficacy against pathogenic bacteria, causing misjudgment of antibiotics' sensitivity in clinical therapy, leading to treatment failure, and posing a serious threat to current medical health. However, the mechanism of Staphylococcus aureus heteroresistance to ciprofloxacin remains unclear. In this study, heteroresistance to ciprofloxacin in S. aureus strain 529 was confirmed by antimicrobial susceptibility testing and population analysis profiling (PAP), with the resistance of subclonal 529_HR based on MIC being 8-fold that of the original bacteria. A 7-day serial MIC evaluation and growth curves demonstrate that their phenotype was stable, with 529_HR growing more slowly than 529, but reaching a plateau in a similar proportion. WGS analysis showed that there were 11 nonsynonymous mutations and one deletion gene between the two bacteria, but none of these SNPs were directly associated with ciprofloxacin resistance. Transcriptome data analysis showed that the expression of membrane potential related genes (qoxA, qoxB, qoxC, qoxD, mprF) was downregulated, and the expression of multidrug resistance efflux pump gene mepA was upregulated. The combination of ciprofloxacin and limonene restored the 529_HR MIC from 1 mg/L to 0.125 mg/L. Measurement of the membrane potential found that 529_HR had a lower potential, which may enable it to withstand the ciprofloxacin-induced decrease in membrane potential. In summary, we demonstrated that upregulation of mepA gene expression and a reduction in membrane potential are the main heteroresistance mechanisms of S. aureus to ciprofloxacin. Additionally, limonene may be a potentially effective agent to inhibit ciprofloxacin heteroresistance phenotypes.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qianting Jian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xinyi Ye
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Mou Jing
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jia’en Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhihong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yali Ruan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Rongmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Ogundare ST, Fasina FO, Makumbi JP, van der Zel GA, Geertsma PF, Kock MM, Smith AM, Ehlers MM. Epidemiology and antimicrobial resistance profiles of pathogenic Escherichia coli from commercial swine and poultry abattoirs and farms in South Africa: A One Health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175705. [PMID: 39181266 DOI: 10.1016/j.scitotenv.2024.175705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Pathogenic Escherichia coli (PEC) are important foodborne bacteria that can cause severe illness in humans. The PECs thrive within the intestines of humans as well as animals and may contaminate multiple ecosystems, including food and water, via faecal transmission. Abattoir and farm employees are at high risk of PEC exposure, which could translate to community risk through person-to-person contact. To determine the epidemiology and resistome of PECs in Gauteng and Limpopo provinces of South Africa, 198 swine faecal samples, 220 poultry cloacal swabs, 108 human hand swabs, 11 run-off water samples from abattoirs and farms were collected from four swine and five poultry commercial abattoirs and two swine farms. One effluent sample each was collected from four wastewater treatment plants (WWTP) and a tertiary hospital setting. Phenotypic and genotypic techniques were used including polymerase chain reaction, pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). Results showed EHEC and EPEC prevalence was 4.1 % (22/542) and 20.8 % (113/542), respectively, with the O26 serogroup detected the most in PEC isolates. According to the PFGE dendrogram, isolates from poultry, human hand swabs and run-off water clustered together. Diverse virulence factors such as the novel stx2k subtype and eae genes were detected among the 36 representative PEC isolates according to WGS. The results showed that 66.7 % (24/36) of sequenced PECs presented with multi-drug resistance (MDR) to β-lactamase 13.9 % (5/36), aminoglycoside 61.1 % (22/36), tetracycline 41.7 % (15/36) and quinolones 38.9 % (14/36). No colistin nor carbapenem resistance was detected. Sequence types (STs) associated with MDR in this study were: ST752, ST189, ST206, ST10, ST48 and ST38. The findings highlight the threat of zoonotic pathogens to close human contacts and the need for enhanced surveillance to mitigate the spread of MDR foodborne PECs.
Collapse
Affiliation(s)
- Samuel T Ogundare
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Folorunso O Fasina
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; Food and Agriculture Organisation of the United Nations, FAO Headquarters, Rome, Italy
| | - John-Paul Makumbi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Gerbrand A van der Zel
- Gauteng Department of Agriculture, Rural Development and Environment, Pretoria, South Africa
| | - Peter F Geertsma
- Gauteng Department of Agriculture, Rural Development and Environment, Pretoria, South Africa
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| | - Anthony M Smith
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
4
|
Mahamat S, Founou RC, Founou LL, Tchouangueu TF, Dimani BD, Nkengkana OA, Mafo LD, Chelo D, Fonkoua MC, Boum-Ii Y, Gonsu H, Noubom M, Olivier Koki Ndombo P, Gatsing D. Occurrence of Extended-spectrum β-lactamase (ESBL) and Carbapenemase-producing Escherichia coli isolated from Childhood Diarrhoea in Yaoundé, Cameroon. BMC Microbiol 2024; 24:401. [PMID: 39385062 PMCID: PMC11465673 DOI: 10.1186/s12866-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Extended-spectrum β-lactamase (ESBL)-producing pathogenic E. coli is a global public health issue, especially in sub-Saharan African countries such as Cameroon. It contributes to increase significantly hospital length of stay, morbidity, mortality and economic costs because of treatment failures. This study aims at determining the resistance background and virulence profiles of ESBL-E. coli isolates among childhood diarrhoea during the cholera outbreak occuring in Yaoundé, Cameroon. MATERIALS AND METHODS During a four-month periods, from March 1st to June 30th, 2023, a total of 84 stool samples were collected from 90 under five children presenting clinical signs of gastroenteritis and attending four hospitals in Yaoundé, Cameroon. Bacterial identification was done using API20E and antimicrobial susceptibility test was performed using the Kirby-Bauer disc diffusion method. After extraction, genomic DNA was subjected to conventional and multiplex polymerase chain reaction methods (PCRs) for detection of resistance and virulence genes. Statistical analysis was performed using Epi info™ (7.2.5.0). Statistical significance was considered at a p-value < 0.05. RESULTS Out of 150 patients contacted, 90 patients were enrolled, 84 samples were collected, 52.38%(44/84) and 3.57%(03/84) were confirmed as extended-spectrum β-lactamase and carbapenemase-producing E. coli respectively. The risk factors were analyzed, and children who drank natural fruit juice (OR: 0.4, p-value: 0.03) were found to be significantly associated with ESBL-producing E. coli. The ESBL-producing E. coli isolates showed a high level of resistance to amoxicillin-clavulanic acid, cefotaxime, ceftazidime, cefepime, colistin, and tetracycline. The blaCTX-M was more prevalent ß-lactamase resistance gene. The tetracycline resistance genes tet(A) and tet(B) were also detected. The most important virulence genes detected were FimH (81.81%) and papA (79.54%). CONCLUSION These findings suggest implementing routine surveillance and screening for antimicrobial resistance among children under five. Antimicrobial stewardship strategies (ASP) need to be implemented to curb the emergence and dissemination of ESBL-producing E. coli. In addition, a national surveillance program for antimicrobial resistance needs to be implemented at local and regional levels in order to reduce morbidity in Cameroon.
Collapse
Affiliation(s)
- Saleh Mahamat
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Raspail Carrel Founou
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon.
- Antimicrobial Research Unit, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
- Antimicrobial Resistance and Infectious Disease (ARID) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon.
- Cameroonian Society of Microbiology, Yaoundé, Cameroon.
| | - Luria Leslie Founou
- Antimicrobial Research Unit, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- Cameroonian Society of Microbiology, Yaoundé, Cameroon
- Reproductive, Maternal, Newborn and Child Health (ReMARCH) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon
- Bioinformatics & Applied Machine Learning Research Unit, EDEN Biosciences Research Institute (EBRI), EDEN Foundation, Yaoundé, Cameroon
- Infection & Global Health Division, School of Medicine, University of St Andrews, St Andrews, UK
| | - Thibau Flaurant Tchouangueu
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Brice Davy Dimani
- Antimicrobial Resistance and Infectious Disease (ARID) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon
| | - Omer Aurelle Nkengkana
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Lethicia Danaëlle Mafo
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - David Chelo
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Mother and Child Center of Chantal Biya Foundation, Yaoundé, Cameroon
| | - Marie Christine Fonkoua
- Cameroonian Society of Microbiology, Yaoundé, Cameroon
- Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Yap Boum-Ii
- Cameroonian Society of Microbiology, Yaoundé, Cameroon
- Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Hortense Gonsu
- Cameroonian Society of Microbiology, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- University Teaching Hospital of Yaoundé, Yaoundé, Cameroon
| | - Michel Noubom
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
- Annex Regional Hospital of Dschang, Dschang, Cameroon
| | - Paul Olivier Koki Ndombo
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Mother and Child Center of Chantal Biya Foundation, Yaoundé, Cameroon
| | - Donatien Gatsing
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
5
|
Heljanko V, Karama M, Kymäläinen A, Kurittu P, Johansson V, Tiwari A, Nyirenda M, Malahlela M, Heikinheimo A. Wastewater and environmental sampling holds potential for antimicrobial resistance surveillance in food-producing animals - a pilot study in South African abattoirs. Front Vet Sci 2024; 11:1444957. [PMID: 39421833 PMCID: PMC11483616 DOI: 10.3389/fvets.2024.1444957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global One Health challenge that causes increased mortality and a high financial burden. Animal production contributes to AMR, as more than half of antimicrobials are used in food-producing animals globally. There is a growing body of literature on AMR in food-producing animals in African countries, but the surveillance practices across countries vary considerably. This pilot study aims to explore the potential of wastewater and environmental surveillance (WES) of AMR and its extension to the veterinary field. Floor drainage swab (n = 18, 3/abattoir) and wastewater (n = 16, 2-3/abattoir) samples were collected from six South African abattoirs that handle various animal species, including cattle, sheep, pig, and poultry. The samples were tested for Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Candida auris by using selective culturing and MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing Escherichia coli (n = 60) and Klebsiella pneumoniae (n = 24) isolates was confirmed with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were further characterized by whole-genome sequencing. In total, 314 isolates (0-12 isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, E. coli and K. pneumoniae among the most abundant. Most E. coli (n = 48/60; 80%) and all K. pneumoniae isolates were recovered from the floor drainage samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates were isolated equally from floor drainage and wastewater samples. MRSA, VRE, or C. auris were not found. All characterized E. coli and K. pneumoniae isolates represented ESBL-phenotype. Genomic analyses revealed multiple sequence types (ST) of E. coli (n = 10) and K. pneumoniae (n = 5), including STs associated with food-producing animals globally, such as E. coli ST48 and ST10 and K. pneumoniae ST101. Common beta-lactamases linked to food-producing animals, such as bla CTX-M-55 and bla CTX-M-15, were detected. The presence of food-production-animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir environment and wastewater indicates the potential of WES in the surveillance of AMR in food-producing animals. Furthermore, the results of this pilot study encourage studying the topic further with refined methodologies.
Collapse
Affiliation(s)
- Viivi Heljanko
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Musafiri Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Kymäläinen
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paula Kurittu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ananda Tiwari
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Matteo Nyirenda
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Annamari Heikinheimo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
6
|
Machulin AV, Abramov VM, Kosarev IV, Deryusheva EI, Priputnevich TV, Panin AN, Manoyan AM, Chikileva IO, Abashina TN, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow's Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli. Antibiotics (Basel) 2024; 13:924. [PMID: 39452191 PMCID: PMC11505560 DOI: 10.3390/antibiotics13100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain.
Collapse
Affiliation(s)
- Andrey V. Machulin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
7
|
Asare Yeboah EE, Agyepong N, Mbanga J, Amoako DG, Abia ALK, Ismail A, Owusu-Ofori A, Essack SY. Genomic characterization of multi drug resistant ESBL-producing Escherichia coli isolates from patients and patient environments in a teaching hospital in Ghana. BMC Microbiol 2024; 24:250. [PMID: 38978012 PMCID: PMC11229298 DOI: 10.1186/s12866-024-03406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The β-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.
Collapse
Affiliation(s)
- Esther Eyram Asare Yeboah
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Department of Pharmaceutical Sciences, School of Pharmacy, Central University, P.O.Box 2305, Miotso, Ghana.
| | - Nicholas Agyepong
- Department of Pharmaceutical Sciences, Sunyani Technical University, Sunyani, Ghana
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Applied Biology & Biochemistry, National University of Science and Technology, P Bag AC939, Bulawayo, Zimbabwe
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Integrative Biology and Bioinformatics, University of Guelph, Guelph, ON, Canada
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Environmental Research Foundation, Westville, 3630, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Tohoyandou, 0950, South Africa
| | - Alexander Owusu-Ofori
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Clinical Microbiology Unit, Laboratory Services Directorate, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Donchev D, Ivanov IN, Stoikov I, Ivanova M. Metagenomic Investigation of the Short-Term Temporal and Spatial Dynamics of the Bacterial Microbiome and the Resistome Downstream of a Wastewater Treatment Plant in the Iskar River in Bulgaria. Microorganisms 2024; 12:1250. [PMID: 38930632 PMCID: PMC11207046 DOI: 10.3390/microorganisms12061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Waste Water Treatment Plants (WWTP) aim to reduce contamination in effluent water; however, studies indicate antimicrobial resistance genes (ARGs) persist post-treatment, potentially leading to their spread from human populated areas into the environment. This study evaluated the impact of a large WWTP serving 125,000 people on the Iskar River in Bulgaria, by characterizing the spatial and short-term temporal dynamics in bacterial community dynamics and resistance profiles of the surface water. Pairs of samples were collected biweekly on four dates from two different locations, one about 800 m after the WWTP effluents and the other 10 km downstream. Taxonomic classification revealed the dominance of Pseudomonodota and Bacteriodota, notably the genera Flavobacterium, Aquirufa, Acidovorax, Polynucleobacter, and Limnohabitans. The taxonomic structure corresponded with both lentic and lotic freshwater habitats, with Flavobacterium exhibiting a significant decrease over the study period. Principal Coordinate Analysis revealed statistically significant differences in bacterial community composition between samples collected on different dates. Differential abundance analysis identified notable enrichment of Polynucleobacter and Limnohabitans. There were shifts within the enriched or depleted bacterial taxa between early and late sampling dates. High relative abundance of the genes erm(B), erm(F), mph(E), msr(E) (macrolides); tet(C), tet(O), tet(W), tet(Q) and tet(X) (tetracyclines); sul1 and sul2 (sulphonamides); and cfxA3, cfxA6 (beta-lactams) were detected, with trends of increased presence in the latest sampling dates and in the location closer to the WWTP. Of note, genes conferring resistance to carbapenems blaOXA-58 and blaIMP-33-like were identified. Co-occurrence analysis of ARGs and mobile genetic elements on putative plasmids showed few instances, and the estimated human health risk score (0.19) according to MetaCompare2.0 was low. In total, 29 metagenome-assembled genomes were recovered, with only a few harbouring ARGs. This study enhances our understanding of freshwater microbial community dynamics and antibiotic resistance profiles, highlighting the need for continued ARGs monitoring.
Collapse
Affiliation(s)
- Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Monika Ivanova
- Paralax Life Sciences, Sofia Center, 47 Bacho Kiro Str., 1202 Sofia, Bulgaria
| |
Collapse
|
9
|
Strasheim W, Lowe M, Smith AM, Etter EMC, Perovic O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics (Basel) 2024; 13:543. [PMID: 38927209 PMCID: PMC11200671 DOI: 10.3390/antibiotics13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli is an indicator micro-organism in One Health antibiotic resistance surveillance programs. The purpose of the study was to describe and compare E. coli isolates obtained from pigs and human contacts from a commercial farm in South Africa using conventional methods and whole-genome sequencing (WGS). Porcine E. coli isolates were proportionally more resistant phenotypically and harbored a richer diversity of antibiotic resistance genes as compared to human E. coli isolates. Different pathovars, namely ExPEC (12.43%, 21/169), ETEC (4.14%, 7/169), EPEC (2.96%, 5/169), EAEC (2.96%, 5/169) and STEC (1.18%, 2/169), were detected at low frequencies. Sequence type complex (STc) 10 was the most prevalent (85.51%, 59/169) among human and porcine isolates. Six STcs (STc10, STc86, STc168, STc206, STc278 and STc469) were shared at the human-livestock interface according to multilocus sequence typing (MLST). Core-genome MLST and hierarchical clustering (HC) showed that human and porcine isolates were overall genetically diverse, but some clustering at HC2-HC200 was observed. In conclusion, even though the isolates shared a spatiotemporal relationship, there were still differences in the virulence potential, antibiotic resistance profiles and cgMLST and HC according to the source of isolation.
Collapse
Affiliation(s)
- Wilhelmina Strasheim
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Michelle Lowe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa;
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Eric M. C. Etter
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), 97170 Petit-Bourg, France
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France
| | - Olga Perovic
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
10
|
Tettey R, Egyir B, Tettey P, Arko-Mensah J, Addo SO, Owusu-Nyantakyi C, Boateng W, Fobil J. Genomic analysis of multidrug-resistant Escherichia coli from Urban Environmental water sources in Accra, Ghana, Provides Insights into public health implications. PLoS One 2024; 19:e0301531. [PMID: 38787855 PMCID: PMC11125565 DOI: 10.1371/journal.pone.0301531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 05/26/2024] Open
Abstract
Wastewater discharge into the environment in resource-poor countries poses a threat to public health. Studies in this area within these countries are limited, and the use of high-throughput whole-genome sequencing technologies is lacking. Therefore, understanding of environmental impacts is inadequate. The present study investigated the antibiotic resistance profiles and diversity of beta-lactamases in Escherichia coli strains isolated from environmental water sources in Accra, Ghana. Microbiological analyses were conducted on wastewater samples from three hospitals, a sewage and wastewater treatment plant, and water samples from two urban surface water bodies. Confirmed isolates (N = 57) were selected for phenotypic antibiotic resistance profiles. Multi-drug-resistant isolates (n = 25) were genome sequenced using Illumina MiSeq sequencing technology and screened for sequence types, antibiotic resistance, virulence and beta-lactamase genes, and mobile genetic elements. Isolates were frequently resistant to ampicillin (63%), meropenem (47%), azithromycin (46%), and sulfamethoxazole-trimethoprim (42%). Twenty different sequence types (STs) were identified, including clinically relevant ones such as ST167 and ST21. Five isolates were assigned to novel STs: ST14531 (n = 2), ST14536, ST14537, and ST14538. The isolates belonged to phylogroups A (52%), B1 (44%), and B2 (4%) and carried β-lactamase (TEM-1B, TEM-1C, CTX-M-15, and blaDHA-1) and carbapenemase (OXA-1, OXA-181) resistance genes. Dominant plasmid replicons included Col440I (10.2%) and IncFIB (AP001918) (6.8%). Polluted urban environments in Accra are reservoirs for antibiotic-resistant bacteria, posing a substantial public health risk. The findings underscore the need for targeted public health interventions to mitigate the spread of antibiotic-resistant bacteria and protect public health.
Collapse
Affiliation(s)
- Rebecca Tettey
- Department of Biological, Environmental, and Occupational Health Science, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Beverly Egyir
- West African Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Prudence Tettey
- Department of Biological, Environmental, and Occupational Health Science, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental, and Occupational Health Science, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Ofori Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William Boateng
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Julius Fobil
- West African Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Sun J, Dai J, Chen J, He Y, Su L, Gong M, Cao M, Wei K, You Y, Liu L, Bai L, Cui S, Chen J, Yang B. Antibiotic susceptibility and genomic analysis of ciprofloxacin-resistant and ESBLs-producing Escherichia coli in vegetables and their irrigation water and growing soil. Int J Food Microbiol 2024; 414:110629. [PMID: 38368793 DOI: 10.1016/j.ijfoodmicro.2024.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The rise of antibiotic resistance in Escherichia coli has become a major global public health concern. While there is extensive research on antibiotic-resistant E. coli from human and animal sources, studies on vegetables and their environments are limited. This study investigated the prevalence and characteristics of ciprofloxacin-resistant (CIPR) E. coli in 13 types of edible raw vegetables, along with their irrigation water and soil in Shaanxi, China. Of 349 samples collected (157 vegetables, 59 water, and 133 soil), a total of 48 positive samples were detected, with one CIPRE. coli strain isolated from each sample being selected for further analyses. A striking observation was its high prevalence in irrigation water at 44.1 %, markedly exceeding that in vegetables (12.0 %) and soil (4.5 %). The susceptibility of Forty-eight CIPRE. coli isolates was evaluated using the disc diffusion method for 18 different antibiotics, all these isolates were not only resistant to the tested fluoroquinolones antibiotics (levofloxacin, nalidixic acid), but also displayed a multi-drug resistance (MDR) pattern. Twenty-eight (58.3 %) of 48 CIPRE. coli isolates exhibited extended spectrum β-lactamases (ESBLs) (CIPR-ESBLs) producing phenotype. Subsequently, whole-genome sequencing was performed on these 28 isolates. We identified 12 serotypes and STs each, with O101: H9 (35.7 %, 10/28) and ST10 (21.4 %, 6/28) being the most common. Further classification placed these isolates into five phylogenetic groups: A (57.1 %, 16/28), B1 (32.1 %, 9/28), D (3.6 %, 1/28), B2 (3.6 %,1/28), and F (3.6 %,1/28). Notelly, Identical ST types, serotypes and phylogroups were found in certain CIPR-ESBLs-producing E. coli from both vegetables and adjacent irrigation water. Genomic analysis of the 28 CIPR-ESBLs-producing E. coli isolates unveiled 73 resistance genes, associated with 13 amino acid mutations in resistance-determining regions (QRDRs) and resistance to 12 types of antibiotics. Each isolate was confirmed to carry both ESBLs and fluoroquinolone resistance genes, with the Ser83Ala mutation in GyrA (96.4 %, 27/28) being the most prevalent. A detailed analysis of Mobile Genetic Elements (MGEs) revealed that IncFIB and IncFII plasmid subtypes were most prevalent in 60.7 % and 67.9 % of isolates, respectively, with 75 % containing over 10 insertion sequences (IS) each. Furthermore, we observed that certain ESBL and PMQR genes were located on plasmids or in proximity to insertion sequences. In conclusion, our research highlights the widespread presence of CIPRE. coli in irrigation water and thoroughly examines the genetic characteristics of CIPR-ESBLs-producing E. coli strains, underlining the need for ongoing monitoring and management to reduce multidrug-resistant bacteria in vegetables and their environment.
Collapse
Affiliation(s)
- Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengqing Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kexin Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lisha Liu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Li Bai
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
13
|
Campos-Madueno EI, Aldeia C, Sendi P, Endimiani A. Escherichia ruysiae May Serve as a Reservoir of Antibiotic Resistance Genes across Multiple Settings and Regions. Microbiol Spectr 2023; 11:e0175323. [PMID: 37318364 PMCID: PMC10434276 DOI: 10.1128/spectrum.01753-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Gut colonization with multidrug-resistant Enterobacterales (MDR-Ent) has reached worrisome levels worldwide. In this context, Escherichia ruysiae is a recently described species mostly found in animals. However, its spread and impact on humans is poorly understood. A stool sample from a healthy individual living in India was screened for the presence of MDR-Ent using culture-based methods. Colonies were routinely identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phenotypically characterized by broth microdilution. Illumina and Nanopore whole-genome sequencing (WGS) platforms were implemented to generate a complete assembly. E. ruysiae genomes deposited in international databases were used for a core genome phylogenetic analysis. An extended-spectrum β-lactamase (ESBL)-producing E. coli strain (S1-IND-07-A) was isolated from the stool. WGS confirmed that S1-IND-07-A was indeed E. ruysiae, belonged to sequence type 5792 (ST5792), core genome (cg) ST89059, serotype O13/O129-:H56-like, clade IV phylogroup, and possessed five virulence factors. A copy of blaCTX-M-15 and five other antimicrobial resistance genes (ARGs) were detected in a conjugative IncB/O/K/Z plasmid. A database search identified 70 further E. ruysiae strains from 16 countries (44, 15, and 11 strains isolated from animals, the environment, and humans, respectively). The core genome phylogeny revealed five major STs: ST6467, ST8084, ST2371, ST9287, and ST5792. Three out of the seventy strains possessed important ARGs: OTP1704 (blaCTX-M-14; ST6467), SN1013-18 (blaCTX-M-15; ST5792), and CE1758 (blaCMY-2; ST7531). These strains were of human, environmental, and wild animal origin, respectively. E. ruysiae may acquire clinically important ARGs and transmit them to other species. Due to its zoonotic potential, further efforts are needed to improve routine detection and surveillance across One Health settings. IMPORTANCE Escherichia ruysiae is a recently described species of the cryptic clades III and IV of the genus Escherichia and is commonly found in animals and the environment. This work highlights the zoonotic potential of E. ruysiae, as it has been shown to colonize the human intestinal tract. Importantly, E. ruysiae may be associated with conjugative plasmids carrying clinically relevant antibiotic resistance genes. Therefore, it is important to closely monitor this species. Overall, this study highlights the need for improved identification of Escherichia species and continued surveillance of zoonotic pathogens in One Health settings.
Collapse
Affiliation(s)
- Edgar I. Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Silva A, Silva V, Pereira JE, Maltez L, Igrejas G, Valentão P, Falco V, Poeta P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics (Basel) 2023; 12:1061. [PMID: 37370379 DOI: 10.3390/antibiotics12061061] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli are one of the most important pathogenic bacteria readily found in the livestock and widely studied as an indicator that carries drug-resistant genes between humans, animals, and the environment. The use of antimicrobials in the food chain, particularly in food-producing animals, is recognized as a significant contributor to the development and spread of antimicrobial resistance (AMR) and resistance genes can be transferred from the farm through the food-chain. The objective of this review is to highlight the background of the antimicrobials use in food-producing animals, more specifically, to study clonal lineages and the resistance profiles observed in E. coli, as well as in extended spectrum beta-lactamases (ESBL) producing E. coli, in a set of food-production animals with greater relevance in food consumption, such as pigs, poultry, cattle, fish farming and rabbits. Regarding the prevalence of ESBL-producing E. coli among farm animals, high-to-moderate prevalence was observed, and the highest resistance rates to tetracycline and ampicillin was detected in different farms in all geographic regions. Worldwide pandemic clones and high-risk zoonotic E. coli clones have been identified in most food-producing animals, and some of these clones are already disseminated in different niches, such as the environment and humans. A better understanding of the epidemiology of E. coli and ESBL-producing E. coli in livestock is urgently needed. Animal production is one of the major causes of the antibiotic resistance problem worldwide and a One Health approach is needed.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Patel MA, Pandey A, Patel AC, Patel SS, Chauhan HC, Shrimali MD, Patel PA, Mohapatra SK, Chandel BS. Whole genome sequencing and characteristics of extended-spectrum beta-lactamase producing Escherichia coli isolated from poultry farms in Banaskantha, India. Front Microbiol 2022; 13:996214. [PMID: 36312963 PMCID: PMC9614321 DOI: 10.3389/fmicb.2022.996214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide dissemination of extended-spectrum -lactamase (ESBL)-producing Escherichia coli constitutes an emerging global health issue, with animal food products contributing as potential reservoirs. ESBL E. coli infection is associated with the high mortality and mobility rate in developing countries due to less susceptibility to antibiotics. The present study aimed to elucidate the molecular characteristics and sequence-based analysis of ESBL E. coli in the Gujarat state of India. This study included 108 E. coli strains were isolated from different poultry farms (broiler and layer) in the Banaskantha District. PCR was employed to identify genotypic ESBL-producing antimicrobial resistance genes. Overall, a high occurrence of ESBL genes was found in poultry farms due to the high usage of antimicrobials. The PCR analysis revealed that 79.62% of isolates were detected positive with one or more ESBL genes. Among them, blaTEM (63.88%) was found to be the predominant genotype, followed by blaSHV (30.55%) and blaOXA (28.70%). In the blaCTX-M group, a higher occurrence was observed in blaCTX-M-9 (23.14%), followed by blaCTX-M-2 (24.07%) and blaCTX-M-1 (22.22%). We used the whole-genome sequencing (WGS) method to evaluate the antimicrobial resistance genes, virulence factors, single nucleotide polymorphisms (SNPs), plasmid replicons, and plasmid-mediated AMR genes of one ESBL E. coli isolated. We examined the genetic relatedness of a human pathogenic E. coli strain by comparing its sequence with the broad geographical reference E. coli sequences. Escherichia coli ST 681 was determined using multi-locus sequence typing. We compared our findings to the reference sequence of Escherichia coli str. K- 12 substr. MG1655. We found 24,937 SNPs with 21,792 in the genic region, 3,145 in the intergenic region, and six InDels across the genome. The WGS analysis revealed 46 antimicrobial resistance genes and seven plasmid-mediated AMR genes viz., tetA, qnrS1, dfrA14, sul2, aph(3”)-lb, aph(6)-ld, and Aph(3’)-la. The ST 681 was found to have Cib, traT, and terC virulence factors and two plasmid replicons, IncFII(pHN7A8) and IncI1-I(Alpha). This study revealed a higher occurrence of ESBL E. coli detected in poultry.
Collapse
Affiliation(s)
- Mitul A. Patel
- Department of Biotechnology, Sankalchand Patel University, Visnagar, India
- *Correspondence: Mitul A. Patel,
| | - Aparna Pandey
- Department of Biochemistry, Dental College, Sankalchand Patel University, Visnagar, India
| | - A. C. Patel
- Department of Veterinary Microbiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - S. S. Patel
- Department of Veterinary Microbiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - H. C. Chauhan
- Department of Veterinary Microbiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - M. D. Shrimali
- Department of Animal Biotechnology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - Pankaj A. Patel
- Department of Physiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - S. K. Mohapatra
- Department of Animal Biotechnology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - B. S. Chandel
- Department of Animal Biotechnology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| |
Collapse
|