1
|
Iqbal NT, Khan H, Khalid A, Mahmood SF, Nasir N, Khanum I, de Siqueira I, Van Voorhis W. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis. Mol Med 2025; 31:22. [PMID: 39849406 PMCID: PMC11756069 DOI: 10.1186/s10020-024-00986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID. Long COVID appears to be accompanied by an auto-immune multi-faceted syndrome where the virus or viral antigen persistence causes continuous stimulation of the immune response, resulting in multi-organ immune dysregulation. MAIN TEXT This review is focused on understanding the risk factors of Long COVID with a special emphasis on the dysregulation of the gut-brain axis. Two proposed mechanisms are discussed here. The first mechanism is related to the dysfunction of angiotensin-converting enzyme 2 receptor due to Severe Acute Respiratory Syndrome Corona Virus 2 infection, leading to impaired mTOR pathway activation, reduced AMP secretion, and causing dysbiotic changes in the gut. Secondly, gut-brain axis dysregulation accompanied by decreased production of short-chain fatty acids, impaired enteroendocrine cell function, and increased leakiness of the gut, which favors translocation of pathogens or lipopolysaccharide in circulation causing the release of pro-inflammatory cytokines. The altered Hypothalamic-Pituitary-Adrenal axis is accompanied by the reduced level of neurotransmitter, and decreased stimulation of the vagus nerve, which may cause neuroinflammation and dysregulation of serum cortisol levels. The dysbiotic microbiome in Long COVID patients is characterized by a decrease in beneficial short chain fatty acid-producing bacteria (Faecalibacterium, Ruminococcus, Dorea, and Bifidobacterium) and an increase in opportunistic bacteria (Corynebacterium, Streptococcus, Enterococcus). This dysbiosis is transient and may be impacted by interventions including probiotics, and dietary supplements. CONCLUSIONS Further studies are required to understand the geographic variation, racial and ethnic differences in phenotypes of Long COVID, the influence of viral strains on existing and emerging phenotypes, to explore long-term effects of gut dysbiosis, and gut-brain axis dysregulation, as well as the potential role of diet and probiotics in alleviating those symptoms.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P. O Box 3500, Karachi, 74800, Pakistan.
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan.
| | - Hana Khan
- Undergraduate Medical Education (UGME), Year II, Aga Khan University, Karachi, Pakistan
| | - Aqsa Khalid
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nosheen Nasir
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, USA
| |
Collapse
|
2
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
3
|
Tandon P, Abrams ND, Avula LR, Carrick DM, Chander P, Divi RL, Dwyer JT, Gannot G, Gordiyenko N, Liu Q, Moon K, PrabhuDas M, Singh A, Tilahun ME, Satyamitra MM, Wang C, Warren R, Liu CH. Unraveling Links between Chronic Inflammation and Long COVID: Workshop Report. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:505-512. [PMID: 38315950 DOI: 10.4049/jimmunol.2300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
As COVID-19 continues, an increasing number of patients develop long COVID symptoms varying in severity that last for weeks, months, or longer. Symptoms commonly include lingering loss of smell and taste, hearing loss, extreme fatigue, and "brain fog." Still, persistent cardiovascular and respiratory problems, muscle weakness, and neurologic issues have also been documented. A major problem is the lack of clear guidelines for diagnosing long COVID. Although some studies suggest that long COVID is due to prolonged inflammation after SARS-CoV-2 infection, the underlying mechanisms remain unclear. The broad range of COVID-19's bodily effects and responses after initial viral infection are also poorly understood. This workshop brought together multidisciplinary experts to showcase and discuss the latest research on long COVID and chronic inflammation that might be associated with the persistent sequelae following COVID-19 infection.
Collapse
Affiliation(s)
- Pushpa Tandon
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Natalie D Abrams
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Leela Rani Avula
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | - Preethi Chander
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Rao L Divi
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD
| | - Gallya Gannot
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | | | - Qian Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kyung Moon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mercy PrabhuDas
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anju Singh
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Mulualem E Tilahun
- National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Merriline M Satyamitra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Chiayeng Wang
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Ronald Warren
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christina H Liu
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Shen X, Xu Y, Huang J, Wu P, Zhou W, Chen Y. A comparative study on two methods of ocular surface microbial sampling. BMC Ophthalmol 2023; 23:228. [PMID: 37217905 DOI: 10.1186/s12886-023-02979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE To compare the effect of traditional conjunctival sac swab sampling (A) with aerosolization ocular surface microorganism sampling (B),a novel microbial sampling method, in detecting ocular microbial infection. METHODS The study included 61 participants (122 eyes) enrolled at the Eye Hospital, Wenzhou Medical University from December, 2021 to March, 2023. Each eye of the participants underwent sampling first with method A then B.Before aerosolization sampling, the air environment was disinfected and sampled as blank air control sample. Subsequently, the air pulses impinging the ocular surface causes dehiscence of the tear film covering the ocular surface and aerosols are formed.The microorganisms from the ocular surface attach to the aerosols generated as aerosolization ocular surface microorganism and be sampled as subject sample by bio-aerosol sampler.The samples were collected and incubated at 25℃ for 3-5 days and 37℃ for 24-48 h.The colonies were counted and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS The accuracy in Group B was higher than that in Group A (45.8% vs. 38.3%, P = 0.289). There was a slight level of agreement between the results from both the sampling methods (k = 0.031, P = 0.730). The sensitivity in Group B was higher than that in Group A (57.1% vs. 35.7%, P = 0.453). The specificity results in Group B was higher than that in Group A (44.3% vs. 38.7%, P = 0.480). There were 12 and 37 types of microbes detected in Groups A and B, respectively. CONCLUSIONS Compared with traditional swab sampling, the novel aerosolization sampling method shows higher accuracy and more comprehensive detection of microbes; however, it cannot completely replace swab sampling. The novel method can be a novel conducive strategy and supplement swab sampling to auxiliary diagnose ocular surface infection.
Collapse
Affiliation(s)
- Xinyi Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinzhi Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyu Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weihe Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanyan Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Thymosin Alpha 1 Restores the Immune Homeostasis in lymphocytes during Post-Acute Sequelae of SARS-CoV-2 infection. Int Immunopharmacol 2023; 118:110055. [PMID: 36989892 PMCID: PMC10030336 DOI: 10.1016/j.intimp.2023.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.
Collapse
Key Words
- post-acute sars-cov-2 symptoms
- thymosin alpha 1
- immune regulation
- anti-inflammatory response
- a-cov, acute covid-19
- aa, ambient air
- cdc, center for desease control and prevention
- em, effector memory
- tfh, follicular helper lymphocytes
- hd, healthy donors
- pasc, post-acute sequelae of sars-cov-2 infection
- pcc, post-covid conditions
- pd-1, programmed cell death-1
- ards, respiratory stress syndrome
- resp sup, respiratory support
- rpmi, roswell park memorial institute
- sev, severe acute phase of infection
- tem, terminal effector memory
- tα1, thymosin alpha 1
Collapse
|