1
|
Peng Z, Gao C, Qiao H, Zhang H, Huang H, Sheng Y, Zhang X, Li B, Chao B, Kang J, Bian C. Exploring Aeromonas veronii in Migratory Mute Swans ( Cygnus olor): A Debut Report and Genetic Characterization. Vet Sci 2025; 12:164. [PMID: 40005924 PMCID: PMC11861175 DOI: 10.3390/vetsci12020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Aeromonas veronii (A. veronii) is a ubiquitous bacterium in terrestrial and aquatic environments. It has a significant impact on animal and human health, with it becoming an emerging crucial pathogen worldwide. However, there have been no reports of mute swan infections. In the present study, after an observation of pathological changes, one bacterial strain isolated from a dead migratory mute swan was identified as A. veronii HNZZ-1/2022 based on its morphology, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and sequence analysis of the 16S rRNA and gyrB genes. To explore its pathogenicity, virulence gene detection and a gosling infection experiment were subsequently carried out, respectively. Six virulence genes for cytotonic enterotoxins (alt), lateral elastase (ela), lipase (lip), cytotoxic enterotoxin (act), aerolysin (aerA), and polar flagellin (fla) were present in the template DNA of A. veronii HNZZ-1/2022. Experimentally infected goslings exhibited hemorrhages of various different degrees in multiple organs. The half-maximal lethal dose (LD50) value of A. veronii strain HNZZ-1/2022 was estimated to be 3.48 × 108 colony forming units (CFUs) per mL for goslings. An antimicrobial susceptibility test showed that the A. veronii HNZZ-1/2022 strain was resistant to meropenem, ampicillin, and enrofloxacin. To date, this is the first report of A. veronii in migratory mute swans, thus expanding the currently known host spectrum. These results suggest that the migratory mute swan is a new host for A. veronii and demonstrate the need for extensive surveillance and research of A. veronii to minimize its transmission between animals, the environment, and humans.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Chunyan Gao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Han Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
| | - Huimin Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Yamin Sheng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Xiaojie Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Baojun Li
- Zhengzhou Zoo, Zhengzhou 450000, China;
| | - Baoliang Chao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Jingjing Kang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (C.G.); (H.Q.); (H.H.); (Y.S.); (X.Z.); (B.C.)
| |
Collapse
|
2
|
Cardona-Cabrera T, Martínez-Álvarez S, González-Azcona C, Gijón-García CJ, Alexandrou O, Catsadorakis G, Azmanis P, Torres C, Höfle U. High Antimicrobial Susceptibility of Cloacal Enterococci and Escherichia coli from Free-Living Dalmatian and Great White Pelicans with Detection of Cefotaximase CTX-M-15 Producing Escherichia coli ST69. Antibiotics (Basel) 2025; 14:83. [PMID: 39858369 PMCID: PMC11761880 DOI: 10.3390/antibiotics14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: In 2022, an outbreak of H5N1 highly pathogenic avian influenza (HPAI) killed 60% of the largest breeding colony of Dalmatian pelicans (DPs) in the world at Mikri Prespa Lake (Greece), prompting a multidisciplinary study on HPAI and other pathogens. This study determines the antimicrobial resistance rates of cloacal enterococci and Escherichia coli in DPs. Methods: Fifty-two blood and cloacal swab samples were collected from 31 nestlings (20 DP/11 great white pelicans) hatched after the H5N1 outbreak at the Prespa colony and 21 subadult/adult DPs captured at a spring migration stopover. The swabs were inoculated in non-selective and chromogenic-selective media. Identification was performed using MALDI-TOF, and antimicrobial susceptibility was tested. The genetic content was characterized using PCR and sequencing, and the clonality of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates was characterized using Multilocus Sequence Typing. Results: Twenty-eight non-repetitive E. coli and 45 enterococci isolates were recovered in non-selective media; most of them were susceptible to all antibiotics tested (85.7% E. coli/91.1% enterococci). Three of the fifty-two samples (6%, all adults) contained ESBL-E. coli isolates (detected in chromogenic ESBL plates), all carrying the blaCTX-M-15 gene and belonging to the lineage ST69. Conclusions: Despite the susceptibility of most fecal E. coli and enterococci isolates to all antibiotics tested, the finding that E. coli of lineage ST69 carry blaCTX-M-15 is of concern. This high-risk clone needs further investigation to elucidate its primary sources and address the growing threat of antimicrobial resistance from an integrated "One Health" perspective. Furthermore, it is imperative to study the potential impacts of ESBL-E. coli on the endangered DP further.
Collapse
Affiliation(s)
- Teresa Cardona-Cabrera
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (T.C.-C.); (C.J.G.-G.)
| | - Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain; (S.M.-Á.); (C.G.-A.); (C.T.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain; (S.M.-Á.); (C.G.-A.); (C.T.)
| | - Carlos Javier Gijón-García
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (T.C.-C.); (C.J.G.-G.)
| | - Olga Alexandrou
- Society for the Protection of Prespa, Agios Germanos, Prespa, 53150 Florina, Greece; (O.A.); (G.C.)
| | - Giorgos Catsadorakis
- Society for the Protection of Prespa, Agios Germanos, Prespa, 53150 Florina, Greece; (O.A.); (G.C.)
| | - Panagiotis Azmanis
- Dubai Falcon Hospital, 22a Street, Zabeel 2, Dubai P.O. Box 23919, United Arab Emirates;
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain; (S.M.-Á.); (C.G.-A.); (C.T.)
| | - Ursula Höfle
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (T.C.-C.); (C.J.G.-G.)
| |
Collapse
|
3
|
Aerts M, Baron S, Bortolaia V, Hendriksen R, Guerra B, Stoicescu A, Beloeil P. Technical specifications for a EU-wide baseline survey of antimicrobial resistance in bacteria from aquaculture animals. EFSA J 2024; 22:e8928. [PMID: 39086460 PMCID: PMC11289621 DOI: 10.2903/j.efsa.2024.8928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The European Commission requested scientific and technical assistance in the preparation of a EU-wide baseline survey of antimicrobial resistance (AMR) in bacteria from aquaculture animals. It is recommended that the survey would aim at estimating the occurrence of AMR in Aeromonas spp. isolated from Atlantic Salmon (Salmo salar), European seabass (Dicentrarchus labrax) and trout (Salmo trutta, Salvelinus fontinalis, Oncorhynchus mykiss) intended to consumption, at harvesting (at farm/slaughter), at the EU level and in addition, at estimating the occurrence and diversity of AMR of Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Vibrio parahaemolyticus and Vibrio alginolyticus in blue mussel (Mytilus edulis) and Mediterranean mussel (Mytilus galloprovincialis) from production areas and at dispatch centres at the EU level. These technical specifications define the target populations, the sample size for the survey, sample collection requirements, the analytical methods (for isolation, identification, phenotypic susceptibility testing and further genotypic analysis of some of the bacteria targeted) and the data reporting requirements. The data to be reported by the EU Member States to support this baseline survey are presented in three data models. The results of the survey should be reported using the EFSA reporting system.
Collapse
|
4
|
Wang D, Ding Q, Zhong Y, Han X, Fu L, Yu J, Li K, You J. Effects of Erythromycin on Nereis succinea and the Intestinal Microbiome across Different Salinity Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2662-2671. [PMID: 38311984 DOI: 10.1021/acs.est.3c06984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The exposure of aquatic organisms to pollutants often occurs concomitantly with salinity fluctuations. Here, we reported the effects of erythromycin (0.250, 7.21, and 1030 μg/L) on marine invertebrate N. succinea and its intestinal microbiome under varying salinity levels (5‰, 15‰, and 30‰). The salinity elicited significant effects on the growth and intestinal microbiome of N. succinea. The susceptibility of the intestinal microbiome to erythromycin increased by 8.7- and 6.2-fold at salinities of 15‰ and 30‰, respectively, compared with that at 5‰ salinity. Erythromycin caused oxidative stress and histological changes in N. succinea intestines, and inhibited N. succinea growth in a concentration-dependent manner under 30‰ salinity with a maximum inhibition of 25%. At the intestinal microbial level, erythromycin enhanced the total cell counts at 5‰ salinity but reduced them at 15‰ salinity. Under all tested salinities, erythromycin diminished the antibiotic susceptibility of the intestinal microbiome. Two-way ANOVA revealed significant interactive effects (p < 0.05) between salinity and erythromycin on various parameters, including antibiotic susceptibility and intestinal microbial diversity. The present findings demonstrated the significant role of salinity in modulating the impacts of erythromycin, emphasizing the necessity to incorporate salinity fluctuations into environmental risk assessments.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiaofeng Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Long Fu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Kunting Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
5
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|