1
|
Choudhury ST, Piper KR, Montoya-Giraldo M, Ikhimiukor OO, Dettman JR, Kassen R, Andam CP. Heterogeneity in recombination rates and accessory gene co-occurrence distinguish Pseudomonas aeruginosa phylogroups. mSystems 2025; 10:e0030125. [PMID: 40304385 DOI: 10.1128/msystems.00301-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Pseudomonas aeruginosa (class Gammaproteobacteria) is a ubiquitous, ecologically widespread, and metabolically versatile species. It is also an opportunistic pathogen that causes a variety of chronic and acute infections in humans. Its ability to thrive in diverse environments and exhibit a wide range of phenotypes lies in part on its large gene pool, but the processes that govern inter-strain genomic variation remain unclear. Here, we aim to characterize the recombination features and accessory genome structure of P. aeruginosa using 840 globally distributed genome sequences. The species can be subdivided into five phylogenetic sequence clusters (corresponding to known phylogroups), two of which are most prominent. Notable epidemic clones are found in the two phylogroups: ST17, ST111, ST146, ST274, and ST395 in phylogroup 1, and ST235 and ST253 in phylogroup 2. The two phylogroups differ in the frequency and characteristics of homologous recombination in their core genomes, including the specific genes that most frequently recombine and the impact of recombination on sequence diversity. Each phylogroup's accessory genome is characterized by a unique gene pool, co-occurrence networks of shared genes, and anti-phage defense systems. Different pools of antimicrobial resistance and virulence genes exist in the two phylogroups and display dissimilar patterns of co-occurrence. Altogether, our results indicate that each phylogroup displays distinct histories and patterns of acquiring exogenous DNA, which may contribute in part to their predominance in the global population. Our study has important implications for understanding the genome dynamics, within-species heterogeneity, and clinically relevant traits of P. aeruginosa. IMPORTANCE The consummate opportunist Pseudomonas aeruginosa inhabits many nosocomial and non-clinical environments, posing a major health burden worldwide. Our study reveals phylogroup-specific differences in recombination features and co-occurrence networks of accessory genes within the species. This genomic variation partly explains its remarkable ability to exhibit diverse ecological and phenotypic traits, and thus contribute to circumventing clinical and public health intervention strategies to contain it. Our results may help inform efforts to control and prevent P. aeruginosa diseases, including managing transmission, therapeutic efforts, and pathogen circulation in non-clinical environmental reservoirs.
Collapse
Affiliation(s)
- Samara T Choudhury
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kathryn R Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Jeremy R Dettman
- Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - Rees Kassen
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
2
|
Scholtz M, Guthrie AJ, Newton R, Schulman ML. Review of Pseudomonas aeruginosa and Klebsiella pneumoniae as venereal pathogens in horses. Equine Vet J 2025; 57:587-597. [PMID: 39103748 PMCID: PMC11982429 DOI: 10.1111/evj.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Three bacteria extensively acknowledged as venereal pathogens with the potential to induce endometritis include Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), specific strains of Pseudomonas aeruginosa, and certain capsule types of Klebsiella pneumoniae. The United Kingdom's Horserace Betting Levy Board recommends pre-breeding screening for these bacteria in their International Codes of Practice and >20 000 samples are tested per annum in the United Kingdom alone. While the pathogenesis and regulatory importance of CEM are well established, an evaluation of the literature pertaining to venereal transmission of P. aeruginosa and K. pneumoniae was lacking. The aim of this review was to evaluate published literature and determine the significance of P. aeruginosa and K. pneumoniae as venereal pathogens in horses. Literature definitively demonstrating venereal transmission was not available. Instead, application of molecular typing methods suggested that common environmental sources of contamination, such as water, or fomites be considered as modes of transmission. The presence of organisms with pathogenic potential on a horse's external genitalia did not predict venereal transmission with resultant endometritis and reduced fertility. These findings may prompt further investigation using molecular technologies to confirm or exclude venereal spread and investigation of alternative mechanisms of transmission are indicated.
Collapse
Affiliation(s)
- Melanie Scholtz
- Equine Research Centre, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa
| | - Alan John Guthrie
- Equine Research Centre, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa
| | - Richard Newton
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Martin Lance Schulman
- Section of Reproduction, Department of Production Animal Studies, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa
| |
Collapse
|
3
|
Newstead L, Smith-Zaitlik T, Kelly C, Roberts E, Street S, Paterson G. Genomic characterization of Pseudomonas aeruginosa from canine otitis highlights the need for a One Health approach to this opportunistic pathogen. Microb Genom 2025; 11:001407. [PMID: 40310270 PMCID: PMC12046095 DOI: 10.1099/mgen.0.001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
In humans, Pseudomonas aeruginosa is well known as a prominent opportunistic pathogen associated with antimicrobial resistance (AMR), which presents a major challenge to successful treatment. This is also the case in animals, particularly in companion dogs where P. aeruginosa is a common cause of otitis. Despite its clinical significance, little data are available on the genomics and epidemiology of P. aeruginosa in dogs. To address this, we have genome-sequenced 34 canine otitis P. aeruginosa isolates from a veterinary referral hospital and analysed these along with a further 62 publicly available genomes from canine isolates. Phylogenetic analysis revealed that all three P. aeruginosa phylogroups, A-C, are represented amongst a diverse bacterial population isolated from dogs. We identify examples of persistent or recurrent infection by the same strain of up to 309 days between sampling, demonstrating the difficulty of successfully eradicating infection. Isolates encoded a variety of AMR genes with genomic and phenotypic AMR correlating poorly for β-lactams but showing complete concordance between fluoroquinolone resistance and quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV. Pangenome-wide analysis between 80 canine otitis isolates (34 newly sequenced here and a further 46 publicly available) and a reference collection of 491 human isolates found no genes which were over-represented or specific to either host species, indicating similar strains infect both humans and dogs. This agrees with the sharing of multilocus sequence types between dogs and humans, including the isolation here of ST235 from three dogs, a lineage prominent among the multidrug resistant (MDR) and extensively drug-resistant (XDR) international high-risk clones of P. aeruginosa causing human infections. The presence of such 'high-risk' clones in companion dogs is concerning given their potential impact on animal health and the potential for zoonotic spread. These data provide new insight into this difficult-to-treat veterinary pathogen and promote the need for a One Health approach to tackling it.
Collapse
Affiliation(s)
- L. Newstead
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, UK
| | - T. Smith-Zaitlik
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, UK
| | - C. Kelly
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, UK
| | - E. Roberts
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, UK
| | - S. Street
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, UK
| | - G.K. Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, UK
| |
Collapse
|
4
|
Habib MB, Shah NA, Amir A, Tariq MH. Molecular and computational insights into algD biofilm genes in multi drug resistant and extensively drug resistant Pseudomonasaeruginosa. Microb Pathog 2025; 205:107634. [PMID: 40306587 DOI: 10.1016/j.micpath.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Antibiotic-resistance and biofilm formation are the main virulence factors and present a serious treatment challenge in Pseudomonas aeruginosa. This study aimed to investigate antimicrobial resistance, genetic diversity, biofilm-specific algD gene, and computational analysis of clinical isolates. Forty two isolates of P. aeruginosa were examined by PCR, ELISA, sangers sequencing, phylogenetic analysis, MolProbity score, 3D structural modelling, Ramachandran plot, multiple sequence alignment, and protein domain analysis. According to the results, PCR analysis revealed algD gene presence in all isolates. ELISA showed 55 % (n = 23) of the samples produced strong biofilms, 38 % (n = 16) produced moderate biofilms, and 7 % (3) produced weak biofilms. The evolutionary relationships of 8 (S1-S8) P. aeruginosa strains with 81 reference strains were illustrated by the phylogenetic tree. Samples S1-S8 showed excellent MolProbity score (<1.00), low clashed scores (0.67-0.70), most residues in the favored regions (∼96.2-96.5 %), low Ramachandran outliers (0.53-0.56 %), low Rotamer outlier (0.62 %), low bad angles (<2), indicated high-quality models and values preferred percentages showed excellent models with structural refinement. Over all samples S5 and S6 stood out as the top choices for high-confidence modeling and applications. The essential catalytic domain UDP-glucose/GDP-mannose dehydrogenase was identified that could be used as important therapeutic targets. High quality models indicated suitability for downstream applications, such as studying protein-ligand interactions, understanding structural aspects of biofilm-resistant bacteria. This study improved our knowledge of the mechanisms underlying P. aeruginosa biofilm resistance and sets the stage for the development of novel therapeutic and diagnostic strategies to combat multidrug resistant strains.
Collapse
Affiliation(s)
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Islamabad, 44000, Pakistan.
| | - Afreenish Amir
- Department of Microbiology, National Institute of Health Islamabad, 44000, Pakistan.
| | | |
Collapse
|
5
|
Buchholtz K, Jønsson R, Marvig RL, Mojsoska B, Krogfelt KA. Chronic wounds and adaptive Pseudomonas aeruginosa: A phenotypic and genotypic characterization. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100348. [PMID: 40027448 PMCID: PMC11868952 DOI: 10.1016/j.crmicr.2025.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Phenotypic and genetic diversity is found in varying prevalence in clinical populations where beneficial adaptations enable the bacteria to avoid recognition and eradication by the host immune system. This study aimed to investigate the presence of Pseudomonas aeruginosa in chronic venous leg ulcers wounds over an 8-week time course. This was performed using genomic and phenotypic approaches to understand the survival and persistence of Pseudomonas strains. The findings of this study show that the two patients were colonized with a recurring P. aeruginosa genotype with only minor phenotypic differences and few SNP differences, suggesting that the Pseudomonas isolates present in the wound can survive and proliferate in the host's hostile environment. The results provided from this study will allow us to understand P. aeruginosa colonization during a 8 week time period.
Collapse
Affiliation(s)
| | - Rie Jønsson
- Department of Science and Environment, Roskilde University, Denmark
| | - Rasmus L. Marvig
- Department of Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Denmark
| | | |
Collapse
|
6
|
Kabir A, Lamichhane B, Habib T, Adams A, El-Sheikh Ali H, Slovis NM, Troedsson MHT, Helmy YA. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond-A Comprehensive Review. Antibiotics (Basel) 2024; 13:713. [PMID: 39200013 PMCID: PMC11350719 DOI: 10.3390/antibiotics13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The equine industry holds substantial economic importance not only in the USA but worldwide. The occurrence of various infectious bacterial diseases in horses can lead to severe health issues, economic losses, and restrictions on horse movement and trade. Effective management and control of these diseases are therefore crucial for the growth and sustainability of the equine industry. While antibiotics constitute the primary treatment strategy for any bacterial infections in horses, developing resistance to clinically important antibiotics poses significant challenges to equine health and welfare. The adverse effects of antimicrobial overuse and the escalating threat of resistance underscore the critical importance of antimicrobial stewardship within the equine industry. There is limited information on the epidemiology of antimicrobial-resistant bacterial infections in horses. In this comprehensive review, we focus on the history and types of antimicrobials used in horses and provide recommendations for combating drug-resistant bacterial infections in horses. This review also highlights the epidemiology of antimicrobial resistance (AMR) in horses, emphasizing the public health significance and transmission dynamics between horses and other animals within a One Health framework. By fostering responsible practices and innovative control measures, we can better help the equine industry combat the pressing threat of AMR and thus safeguard equine as well as public health.
Collapse
Affiliation(s)
- Ajran Kabir
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Bibek Lamichhane
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Tasmia Habib
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Alexis Adams
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Nathan M. Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA;
| | - Mats H. T. Troedsson
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Yosra A. Helmy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| |
Collapse
|
7
|
Ganjo AR, Ali FA, Aka ST, Hussen BM, Smail SB. Diversity of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa recovered from various clinical isolates. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:742-749. [PMID: 38156300 PMCID: PMC10751611 DOI: 10.18502/ijm.v15i6.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Background and Objectives The resistance of Pseudomonas aeruginosa to antibiotics offers a significant challenge in the treatment of patients. This study aimed to investigate the antimicrobial resistance profile, biofilm-specific antimicrobial resistance genes, and genetic diversity of P. aeruginosa recovered from clinical samples. Materials and Methods Totally 47 non-duplicate isolates of P. aeruginosa were recovered from various clinical samples. toxA, algD, ndvB, and tssC1 genes were detected in biofilm-producing isolates. The DNA sequences of the toxA and tssC1 genes were analyzed, by creating phylogenetic trees. Results The findings revealed that 30 (63.8%) of the isolates tested positive for Extended spectrum β-lactamase (ESBL), whereas 31 (65.9%) tested positive for Metallo-β-lactamase (MBL) and all of the isolates presented the toxA genes, and 19.1%,17%, 6.3% presented by algD, ndvB and tssC1 genes. Besides, the phylogenetic trees of the toxA and tssC1 gene isolates suggested a genotype that was closely aligned with others. Gene sequencing similarity revealed 99% identity with other isolates deposited in GenBank. Conclusion The occurrence of toxA was most prevalent. One isolate was recorded as a novel isolate in the global gene bank as a locally isolated strain from the city of Erbil that has never been identified in global isolates due to genetic variation.
Collapse
Affiliation(s)
- Aryan R. Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Fattma A. Ali
- Department of Medical Microbiology, College of Health Science, Hawler Medical University, Erbil, Iraq
| | - Safaa T. Aka
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Bashdar M. Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | |
Collapse
|
8
|
Płókarz D, Bierowiec K, Rypuła K. Screening for Antimicrobial Resistance and Genes of Exotoxins in Pseudomonas aeruginosa Isolates from Infected Dogs and Cats in Poland. Antibiotics (Basel) 2023; 12:1226. [PMID: 37508322 PMCID: PMC10376396 DOI: 10.3390/antibiotics12071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas aeruginosa has assumed an increasingly prominent role as the aetiological agent in serious hard-to-treat infections in animals and humans. In this study, 271 P. aeruginosa strains collected from dogs and cats were investigated. The aim of the research was to screen these P. aeruginosa strains for antibiotic resistance and the presence of selected virulence factor genes. Antibiotic resistance was determined using the Kirby-Bauer method, while virulence genes were detected by polymerase chain reaction (PCR). The most frequently detected resistance was to fluoroquinolones, ranging in prevalence from 17.3% for ciprofloxacin up to 83% for enrofloxacin. The resistance to carbapenems was 14% and 4.8% for imipenem and meropenem, respectively. Almost all P. aeruginosa strains harboured the exoT (97.8%) and lasB (93.4%) genes, while the lowest prevalence was found for exoU (17.3%) and plcH (17.3%). P. aeruginosa strains isolated from dogs that harboured the toxA gene were more frequently resistant to ceftazidime (p = 0.012), while the presence of the exoU gene was found to be connected with resistance to marbofloxacin (p = 0.025) and amikacin (p = 0.056). In strains originating from cats, only the connection between the presence of the exoU gene and resistance to enrofloxacin (p = 0.054) was observed. The confirmation of associations between virulence-factor-encoding genes and antibiotic resistance indicates that problems of antibiotic resistance may not only cause complications at the level of antibiotic dosage but also lead to changes in the virulence of the bacteria; thus, further studies in this area are required.
Collapse
Affiliation(s)
- Daria Płókarz
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Karolina Bierowiec
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Krzysztof Rypuła
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| |
Collapse
|
9
|
Smoglica C, Angelucci S, Di Tana F, Antonucci A, Marsilio F, Di Francesco CE. Antibiotic Resistance in the Apennine Wolf ( Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics (Basel) 2023; 12:950. [PMID: 37370269 DOI: 10.3390/antibiotics12060950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Apennine wolf (Canis lupus italicus) is a subspecies of gray wolf that is widespread throughout Italy. Due to hunting and habitat loss, their population declined dramatically in the late 19th and early 20th centuries, but conservation efforts improved to restore the species to an estimated population of 3300 individuals. The presence of antibiotic-resistant bacteria in Apennine Wolf may pose a risk to its health and survival, as well as the health of other animals in its environment. In this study, we investigated the antibiotic resistance profiles of bacteria collected from Apennine wolves admitted to the Wildlife Research Center of Maiella National Park (Italy) in 2022. A total of 12 bacteria collected from four wolves were isolated and tested for susceptibility to antibiotics used in veterinary medicine and to critically important antibiotics for human health by means of the Vitek 2 system. All isolates were resistant to at least one antibiotic, and six bacteria were multidrug resistant to critically important antibiotics (third-generation cephalosporins, carbapenems and fluoroquinolones). The results of this pilot study have allowed for the characterization of resistant profiles in Escherichia coli, Enterococcus faecalis and other bacterial species not previously reported in Apennine wolves. Our findings provide important insights into antibiotic resistance in wildlife and its potential implications for the conservation of biodiversity and public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Simone Angelucci
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Antonio Antonucci
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fulvio Marsilio
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Cristina Esmeralda Di Francesco
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
10
|
de Sousa T, Garcês A, Silva A, Lopes R, Alegria N, Hébraud M, Igrejas G, Poeta P. The Impact of the Virulence of Pseudomonas aeruginosa Isolated from Dogs. Vet Sci 2023; 10:vetsci10050343. [PMID: 37235426 DOI: 10.3390/vetsci10050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium that can cause serious infections in both humans and animals, including dogs. Treatment of this bacterium is challenging because some strains have developed multi-drug resistance. This study aimed to evaluate the antimicrobial resistance patterns and biofilm production of clinical isolates of P. aeruginosa obtained from dogs. The study found that resistance to various β-lactam antimicrobials was widespread, with cefovecin and ceftiofur showing resistance in 74% and 59% of the isolates tested, respectively. Among the aminoglycosides, all strains showed susceptibility to amikacin and tobramycin, while gentamicin resistance was observed in 7% of the tested isolates. Furthermore, all isolates carried the oprD gene, which is essential in governing the entry of antibiotics into bacterial cells. The study also investigated the presence of virulence genes and found that all isolates carried exoS, exoA, exoT, exoY, aprA, algD, and plcH genes. This study compared P. aeruginosa resistance patterns worldwide, emphasizing regional understanding and responsible antibiotic use to prevent multi-drug resistance from emerging. In general, the results of this study emphasize the importance of the continued monitoring of antimicrobial resistance in veterinary medicine.
Collapse
Affiliation(s)
- Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Portugal
| | - Andreia Garcês
- CRL-CESPU, Cooperativa de Ensino Superior Politécnico e Universitário, R. Central Dada Gandra, 1317, 4585-116 Gandra, Portugal
- CITAB, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Augusto Silva
- INNO-Veterinary Laboratory, R. Cândido de Sousa 15, 4710-503 Braga, Portugal
| | - Ricardo Lopes
- INNO-Veterinary Laboratory, R. Cândido de Sousa 15, 4710-503 Braga, Portugal
| | - Nuno Alegria
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Michel Hébraud
- UMR Microbiologie Environnement Digestif Santé (MEDiS), INRAE, Université Clermont Auvergne, 60122 Saint-Genès-Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
11
|
Pottier M, Gravey F, Castagnet S, Auzou M, Langlois B, Guérin F, Giard JC, Léon A, Le Hello S. A 10-year microbiological study of Pseudomonas aeruginosa strains revealed the circulation of populations resistant to both carbapenems and quaternary ammonium compounds. Sci Rep 2023; 13:2639. [PMID: 36788252 PMCID: PMC9929048 DOI: 10.1038/s41598-023-29590-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections. For this study, the susceptibility profiles to antipseudomonal antibiotics and a quaternary ammonium compound, didecyldimethylammonium chloride (DDAC), widely used as a disinfectant, were established for 180 selected human and environmental hospital strains isolated between 2011 and 2020. Furthermore, a genomic study determined resistome and clonal putative relatedness for 77 of them. During the ten-year study period, it was estimated that 9.5% of patients' strains were resistant to carbapenems, 11.9% were multidrug-resistant (MDR), and 0.7% were extensively drug-resistant (XDR). Decreased susceptibility (DS) to DDAC was observed for 28.0% of strains, a phenotype significantly associated with MDR/XDR profiles and from hospital environmental samples (p < 0.0001). According to genomic analyses, the P. aeruginosa population unsusceptible to carbapenems and/or to DDAC was diverse but mainly belonged to top ten high-risk clones described worldwide by del Barrio-Tofiño et al. The carbapenem resistance appeared mainly due to the production of the VIM-2 carbapenemase (39.3%) and DS to DDAC mediated by MexAB-OprM pump efflux overexpression. This study highlights the diversity of MDR/XDR populations of P. aeruginosa which are unsusceptible to compounds that are widely used in medicine and hospital disinfection and are probably distributed in hospitals worldwide.
Collapse
Affiliation(s)
- Marine Pottier
- Research Department, LABÉO, 14053, Caen, France.,UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - François Gravey
- UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France.,Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France
| | - Sophie Castagnet
- Research Department, LABÉO, 14053, Caen, France.,UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - Michel Auzou
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France
| | - Bénédicte Langlois
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France
| | - François Guérin
- Laboratoire de Bactériologie et Hygiène Hospitalière, CHU de Rennes, 2 Rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Jean-Christophe Giard
- UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - Albertine Léon
- Research Department, LABÉO, 14053, Caen, France.,UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - Simon Le Hello
- UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France. .,Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France. .,Service d'Hygiène Hospitalière, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France.
| |
Collapse
|