1
|
Borges JC, Barros ABC, Cardoso LL, Keesen TDLS, Campos LADA, Cavalcanti IMF, Kretzschmar EADM. Antileishmanial Activities of Carvacrol Nanoencapsulate in Biopolymeric Nanoparticles. Chem Biodivers 2025:e202403341. [PMID: 40273418 DOI: 10.1002/cbdv.202403341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
Visceral leishmaniasis (VL) is a neglected parasitic disease, and the first-line treatments for VL include drugs that exhibit serious toxicological issues. In this sense, new molecules are sought for VL treatment, such as Carvacrol (Car), a phenolic monoterpene that has shown strong activity against Leishmania spp. However, its low solubility prevents its free administration, requiring a new therapeutic strategy such as encapsulation in chitosan biopolymeric nanoparticles. This study aimed to develop chitosan biopolymeric nanoparticles (NPChi) encapsulating Car (NPCar) and evaluate their in vitro anti-leishmanial activity. The NPChi had particle sizes of 89.43 ± 0.774 nm, a polydispersity index (PDI) of 0.168 ± 0.01 and zeta potential of 12.8 ± 2.17 mV. The NPCar showed particle size of 144.9 ± 1.7 nm, PDI of 0.224 and zeta potential of 15.7 ± 1.01 mV. NPCar reduced the cytotoxicity of Car on human erythrocytes. Moreover, NPCar showed inhibition of Leishmania infantum with an inhibitory concentration (IC50) of 2.659 ± 0.26 µg/mL. Thus, NPCar exhibited enhanced anti-leishmanial activity compared to free Car while reducing cytotoxicity on human erythrocytes, making them promising candidates for further studies on VL treatment.
Collapse
Affiliation(s)
- Joyce Cordeiro Borges
- Laboratory of Industrial Nanoscience and Nanobiotechnology (LANNI), Center for Biotechnology, Federal University of Paraiba, Castelo Branco, João Pessoa, Paraiba, Brazil
| | - Anne Beatriz Cunha Barros
- Laboratory of Industrial Nanoscience and Nanobiotechnology (LANNI), Center for Biotechnology, Federal University of Paraiba, Castelo Branco, João Pessoa, Paraiba, Brazil
| | - Leonardo Lima Cardoso
- Laboratory of Immunology of Infectious Diseases (LABIDIC), Center for Biotechnology, Federal University of Paraiba, Castelo Branco, João Pessoa, Paraiba, Brazil
| | - Tatjana de Lima Souza Keesen
- Laboratory of Immunology of Infectious Diseases (LABIDIC), Center for Biotechnology, Federal University of Paraiba, Castelo Branco, João Pessoa, Paraiba, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Parasitology, Campus Ouricuri, University of Pernambuco, Ouricuri, Pernambuco, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Elisângela Afonso de Moura Kretzschmar
- Laboratory of Industrial Nanoscience and Nanobiotechnology (LANNI), Center for Biotechnology, Federal University of Paraiba, Castelo Branco, João Pessoa, Paraiba, Brazil
| |
Collapse
|
2
|
Lima AKO, Vieira ÍRS, Souza LMDS, Florêncio I, da Silva IGM, Tavares Junior AG, Machado YAA, dos Santos LC, Taube PS, Nakazato G, Espindola LS, Albernaz LC, Rodrigues KADF, Chorilli M, Braga HDC, Tada DB, Báo SN, Muehlmann LA, Garcia MP. Green Synthesis of Silver Nanoparticles Using Paullinia cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties. Pharmaceutics 2025; 17:356. [PMID: 40143020 PMCID: PMC11945093 DOI: 10.3390/pharmaceutics17030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background:Paullinia cupana Kunth, popularly known as guarana, a native Amazonian shrub cultivated by the Sateré-Mawé ethnic group, has been used in traditional medicine for various purposes, including stimulant and therapeutic actions, due to its chemical composition, which is rich in bioactive compounds. This study explored the reductive potential of guarana with nanobiotechnology and aimed to synthesize silver nanoparticles (AgNPs) using the aqueous extract of leaves collected during the dry and rainy seasons, assessing their biological and catalytic activities. Methods: The AgNPs were synthesized in a water bath at 70 °C for three hours and then characterized using techniques such as UV-Vis spectroscopy, DLS, zeta potential, MET, NTA, and EDX and had their effects on various biological systems assessed in vitro, as well as in catalytic tests aimed at indicating the probable influence of the time when the plant material was collected on the properties of the nanostructures. Results: The AgNPs had an average diameter between 39.33 and 126.2 nm, spherical morphology, absorption bands between 410 and 450 nm, and high colloidal stability over two years. The biological results showed antibacterial activity against all the species tested, as well as remarkable antioxidant action against DPPH and ABTS free radicals, in the same way as the aqueous leaf extracts of P. cupana, in addition to cytotoxic properties against cancerous (A431 and A549) and non-cancerous (HaCaT and HNTMC) cells. The AgNPs were active against promastigote forms of Leishmania (Leishmania) amazonensis while not affecting the viability of macrophages, and from the LC50 and LC90 values, the AgNPs were more effective than the metal salt solution in controlling Aedes aegypti larvae and pupae. We also reported that the catalytic degradation of the organic dyes methylene blue (MB) and methyl orange (MO) by AgNPs was over 90% after 40 or 14 min, respectively. Conclusions: Thus, our results support the potential of seasonal extracts of guarana leaves to produce AgNPs with diverse application possibilities for the health, industrial, and environmental sectors.
Collapse
Affiliation(s)
- Alan Kelbis Oliveira Lima
- Embrapa Agroenergy, Brazilian Agricultural Research Corporation (EMBRAPA), Brasília 70770-901, DF, Brazil
| | - Ítalo Rennan Sousa Vieira
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, RJ, Brazil
| | | | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | | | - Yasmin Alves Aires Machado
- Laboratory of Infectious Diseases, Parnaíba Delta Federal University (UFDPar), Parnaíba 64202-020, PI, Brazil
| | - Lucas Carvalho dos Santos
- Laboratory for the Isolation and Transformation of Organic Molecules, Institute of Chemistry, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | - Paulo Sérgio Taube
- Institute of Biodiversity and Forests, Federal University of Western Pará (UFOPA), Santarem 68005-100, PA, Brazil
| | - Gerson Nakazato
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil
| | - Dayane Batista Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | | | - Mônica Pereira Garcia
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| |
Collapse
|
3
|
Campos LMO, Marques EM, Lera-Nonose DSSL, Gonçalves MJS, Lonardoni MVC, Nunes GCDS, Braga G, Gonçalves RS. Enhanced Nanogel Formulation Combining the Natural Photosensitizer Curcumin and Pectis brevipedunculata (Asteraceae) Essential Oil for Synergistic Daylight Photodynamic Therapy in Leishmaniasis Treatment. Pharmaceutics 2025; 17:286. [PMID: 40142949 PMCID: PMC11945319 DOI: 10.3390/pharmaceutics17030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Neglected tropical diseases (NTDs), such as leishmaniasis, remain a global health challenge due to limited therapeutic options and rising drug resistance. In this study, we developed an advanced nanogel formulation incorporating curcumin (CUR) and Pectis brevipedunculata essential oil (EOPb) within an F127/Carbopol 974P matrix to enhance bioavailability and therapeutic efficacy against Leishmania (Leishmania) amazonensis (LLa) promastigotes. Methods: The chemical profile of EOPb was determined through GC-MS and NMR analyses, confirming the presence of key bioactive monoterpenes such as neral, geranial, α-pinene, and limonene. The nanogel formulation (nGPC) was optimized to ensure thermosensitivity, and stability, exhibiting a sol-gel transition at physiological temperatures. Rheological analysis revealed that nGPC exhibited Newtonian behavior at 5 °C, transitioning to shear-thinning and thixotropic characteristics at 25 and 32 °C, respectively. This behavior facilitates its application and controlled drug release, making it ideal for topical formulations. Dynamic light scattering (DLS) analysis demonstrated that nGPC maintained a stable nanoscale structure with hydrodynamic radius below 300 nm, while Fourier-transform infrared spectroscopy (FTIR) confirmed strong molecular interactions between EOPb, CUR, and the polymer matrix. Biological assays demonstrated that nGPC significantly enhanced anti-promastigote activity compared to free CUR and OEPb. Results: At the highest tested concentration (50 μg/mL EOPb and 17.5 μg/mL CUR) nGPC induced over 88% mortality in LLa promastigotes across 24, 48, and 72 h, indicating sustained efficacy. Even at lower concentrations, nGPC retained dose-dependent activity, suggesting a synergistic effect between CUR and EOPb. These findings highlight the potential of nGPC as an innovative nanocarrier for daylight photodynamic therapy (dPDT) in the treatment of leishmaniasis. Future studies will investigate the underlying mechanisms of this synergism and explore the potential application of photodynamic therapy (PDT) to further enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Lara Maria Oliveira Campos
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (L.M.O.C.); (E.M.M.)
| | - Estela Mesquita Marques
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (L.M.O.C.); (E.M.M.)
| | | | - Maria Julia Schiavon Gonçalves
- Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá 87020-900, Brazil; (D.S.S.L.L.-N.); (M.J.S.G.); (M.V.C.L.)
| | - Maria Valdrinez Campana Lonardoni
- Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá 87020-900, Brazil; (D.S.S.L.L.-N.); (M.J.S.G.); (M.V.C.L.)
| | | | - Gustavo Braga
- University College (COLUN), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
| | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (L.M.O.C.); (E.M.M.)
| |
Collapse
|
4
|
Nunes AP, Dos Santos YM, da Silva Sanfelice RA, Concato-Lopes VM, Silva TF, Tomiotto-Pellissier F, Lazarin-Bidoia D, Machado RRB, de Barros LD, Garcia JL, Conchon-Costa I, Pavanelli WR, Kobayashi RKT, de Freitas Barbosa B, Ferro EAV, Costa IN. Essential oil of oregano (Origanum vulgare L.) reduces infection and proliferation of Toxoplasma gondii in BeWo cells with induction of autophagy and death of tachyzoites through a mechanism similar to necrosis. Parasitol Res 2024; 123:217. [PMID: 38772951 DOI: 10.1007/s00436-024-08231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 μg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.
Collapse
Affiliation(s)
- Angélica Paulina Nunes
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Yasmin Munhoz Dos Santos
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Virgínia Marcia Concato-Lopes
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Rayanne Regina Beltrame Machado
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Luiz Daniel de Barros
- Department of Veterinary Medicine - Laboratory of Animal Protozoology, State University of Londrina, Londrina, Paraná, Brazil
| | - João Luis Garcia
- Department of Veterinary Medicine - Laboratory of Animal Protozoology, State University of Londrina, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Bellisa de Freitas Barbosa
- Department of Cell Biology, Histology and Embryology - Laboratory of Reproduction Immunophysiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Cell Biology, Histology and Embryology - Laboratory of Reproduction Immunophysiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Idessania Nazareth Costa
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Di Liberto D, Iacuzzi N, Pratelli G, Porrello A, Maggio A, La Bella S, De Blasio A, Notaro A, D’Anneo A, Emanuele S, Affranchi F, Giuliano M, Lauricella M, Carlisi D. Cytotoxic Effect Induced by Sicilian Oregano Essential Oil in Human Breast Cancer Cells. Cells 2023; 12:2733. [PMID: 38067161 PMCID: PMC10706043 DOI: 10.3390/cells12232733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Origanum vulgare L. is an aromatic plant that exerts antibacterial, antioxidant, anti-inflammatory, and antitumor activities, mainly due to its essential oil (EO) content. In this study, we investigated the possible mechanism underlying the in vitro antitumor activity of EO extracted by hydrodistillation of dried flowers and leaves of Origanum vulgare L. grown in Sicily (Italy) in MDA-MB-231 and MCF-7 breast cancer cell lines. Gas chromatography-mass spectrometry analysis of Oregano essential oil (OEO) composition highlighted the presence of twenty-six major phytocompounds, such as p-cymene, γ-terpinene, and thymoquinone p-acetanisole. OEO possesses strong antioxidant capacity, as demonstrated by the DPPH test. Our studies provided evidence that OEO reduces the viability of both MCF-7 and MDA-MB-231 cells. The cytotoxic effect of OEO on breast cancer cells was partially counteracted by the addition of z-VAD-fmk, a general caspase inhibitor. Caspases and mitochondrial dysfunction appeared to be involved in the OEO-induced death mechanism. Western blotting analysis showed that OEO-induced activation of pro-caspases-9 and -3 and fragmentation of PARP decreased the levels of Bcl-2 and Bcl-xL while increasing those of Bax and VDAC. In addition, fluorescence microscopy and cytofluorimetric analysis showed that OEO induces a loss of mitochondrial membrane potential in both cell lines. Furthermore, we tested the effects of p-cymene, γ-terpinene, thymoquinone, and p-acetanisole, which are the main components of OEO. Our findings highlighted that the effect of OEO on MDA-MB-231 and MCF-7 cells appears to be mainly due to the combination of different constituents of OEO, providing evidence of the potential use of OEO for breast cancer treatment.
Collapse
Affiliation(s)
- Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Nicolò Iacuzzi
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (N.I.); (S.L.B.)
| | - Giovanni Pratelli
- Department of Physics and Chemistry (DiFC)-Emilio Segrè, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy;
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (A.M.)
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (A.M.)
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (N.I.); (S.L.B.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| |
Collapse
|
6
|
Rodrigues ACJ, Carloto ACM, Gonçalves MD, Concato VM, Detoni MB, dos Santos YM, Cruz EMS, Madureira MB, Nunes AP, Pires MFMK, Santos NC, Marques REDS, Bidoia DL, Borges Figueiredo F, Pavanelli WR. Exploring the leishmanicidal potential of terpenoids: a comprehensive review on mechanisms of cell death. Front Cell Infect Microbiol 2023; 13:1260448. [PMID: 37799331 PMCID: PMC10550302 DOI: 10.3389/fcimb.2023.1260448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease with a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths reported each year. The species of Leishmania and the immune response of the host determine the severity of the disease. Leishmaniasis remains challenging to diagnose and treat, and there is no vaccine available. Several studies have been conducted on the use of herbal medicines for the treatment of leishmaniasis. Natural products can provide an inexhaustible source of chemical diversity with therapeutic potential. Terpenes are a class of natural products derived from a single isoprene unit, a five-carbon compound that forms the basic structure of isoprenoids. This review focuses on the most important and recent advances in the treatment of parasites of the genus Leishmania with different subclasses of terpenes. Several mechanisms have been proposed in the literature, including increased oxidative stress, immunomodulatory role, and induction of different types of parasite cell death. However, this information needs to be brought together to provide an overview of how these compounds can be used as therapeutic tools for drug development and as a successful adjuvant strategy against Leishmania sp.
Collapse
Affiliation(s)
- Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
- Cell Biology Laboratory, Carlos Chagas Institute- Fiocruz, Curitiba, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Virgínia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Yasmin Munhoz dos Santos
- Laboratory of Experimental Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Maria Beatriz Madureira
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Angélica Paulina Nunes
- Laboratory for Metabolic Disorders of Reproduction, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Maria Fernanda Maya Kuriki Pires
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Natália Concimo Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|