1
|
Ho NAT, Given FM, Stanborough T, Klein M, Allison TM, Bulloch EMM, Jiao W, Johnston JM. Apparent Reversal of Allosteric Response in Mycobacterium tuberculosis MenD Reveals Links to Half-of-Sites Reactivity. Chembiochem 2025; 26:e202400943. [PMID: 39945237 DOI: 10.1002/cbic.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
Redox-active molecules play critical roles in various biological functions, including cellular respiration. In bacterial electron transport chains, menaquinones serve as key electron carriers. The first committed enzyme in the menaquinone biosynthesis pathway of Mycobacterium tuberculosis (Mtb), MenD, is allosterically inhibited by 1,4-dihydroxy-2-naphthoic acid (DHNA), the first redox-active metabolite in the pathway. Structural asymmetries in Mtb-MenD suggest that this enzyme operates via a half-of-sites mechanism for catalysis. Here, we investigate the interplay between its catalytic and allosteric mechanisms. Using molecular dynamics (MD) simulations, mutagenesis, kinetic and binding assays, and structural analyses, we identified and characterised mutants of two residues, D141 and D306, involved in stabilising asymmetric conformations associated with allostery. These mutations had complex effects on Mtb-MenD's reaction kinetics, with the D306 mutants showing an apparent reversal of the allosteric response to DHNA. Our findings indicate that asymmetric active site conformations may facilitate optimal binding of cofactors and substrates, while the transition between alternating active site conformations is essential for the catalytic cycle. DHNA binding stabilises asymmetry in the tetramer, likely promoting the binding of cofactors, substrates, or reaction intermediates. However, DHNA interferes with the transition between alternating conformations, ultimately impairing turnover and catalytic cycling in Mtb-MenD.
Collapse
Affiliation(s)
- Ngoc Anh Thu Ho
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Fiona M Given
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Tamsyn Stanborough
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Michelle Klein
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Esther M M Bulloch
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Jodie M Johnston
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| |
Collapse
|
2
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
3
|
Chaudhary B, Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. In silico analysis and characterization of potential inhibitors of MmaA3, a methoxy mycolic acid synthase from Mycobacterium tuberculosis. J Biomol Struct Dyn 2024:1-26. [PMID: 38726567 DOI: 10.1080/07391102.2024.2349545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/23/2024] [Indexed: 01/04/2025]
Abstract
The emergence of the multi-and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (M.tb), necessitates paradigm-shifting therapeutic approaches. The impermeable waxy lipid layer, primarily composed of mycolic acids, is a key factor in conferring resistance to conventional drugs. This study introduces a novel strategy to combat drug resistance by targeting Methoxy mycolic acid synthase 3 (MmaA3), a critical enzyme in the mycolic acid biosynthesis pathway. MmaA3 is responsible for the O-methylation of hydroxymycolate precursors and emerges as a promising therapeutic target. Through homology-based modeling, we generated a three-dimensional structure of MmaA3, providing crucial insights into its structural characteristics. High throughput virtual screening was performed against the MmaA3 model, using diverse sources: knowledge-based, FDA-approved Drugbank, and Asinex-Elite libraries. Through rigorous computational analyses, including binding affinity assessments, molecular interactions analysis, and binding free energy calculations, potential inhibitors of MmaA3 have been identified. Subsequent validation studies evaluated the stability of top protein-ligand complexes, and free energy calculations using molecular dynamics simulations. The stability of complexes within the catalytic site was confirmed through RMSD and RMSF profile analyses. Furthermore, binding free energy calculations using the MM-GBSA approach revealed significant binding affinity of identified ligands for MmaA3 target protein, comparable to its substrate/cofactors. These findings underscore the potential of the proposed molecules as candidates for further experimental exploration, offering promising avenues for the development of effective inhibitors against M.tb. Overall, our research contributes to significantly advancing the formulation of progressive therapeutic strategies in combating drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Bhawna Chaudhary
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
4
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
5
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
6
|
Kägi J, Sloan W, Schimpf J, Nasiri HR, Lashley D, Friedrich T. Exploring ND-011992, a quinazoline-type inhibitor targeting quinone reductases and quinol oxidases. Sci Rep 2023; 13:12226. [PMID: 37507428 PMCID: PMC10382516 DOI: 10.1038/s41598-023-39430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.
Collapse
Affiliation(s)
- Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willough Sloan
- Department of Chemistry, William & Mary, Williamsburg, VA, USA
| | - Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hamid R Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Dana Lashley
- Department of Chemistry, William & Mary, Williamsburg, VA, USA.
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Capela R, Félix R, Clariano M, Nunes D, Perry MDJ, Lopes F. Target Identification in Anti-Tuberculosis Drug Discovery. Int J Mol Sci 2023; 24:10482. [PMID: 37445660 DOI: 10.3390/ijms241310482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Félix
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Clariano
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diogo Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria de Jesus Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
8
|
Samanta S, Kumar S, Aratikatla EK, Ghorpade SR, Singh V. Recent developments of imidazo[1,2- a]pyridine analogues as antituberculosis agents. RSC Med Chem 2023; 14:644-657. [PMID: 37122538 PMCID: PMC10131611 DOI: 10.1039/d3md00019b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Over the past 2000 years, tuberculosis (TB) has killed more people than any other infectious disease. In 2021, TB claimed 1.6 million lives worldwide, making it the second leading cause of death from an infectious disease after COVID-19. Unfortunately, TB drug discovery research was neglected in the last few decades of the twentieth century. Recently, the World Health Organization has taken the initiative to develop new TB drugs. Imidazopyridine, an important fused bicyclic 5,6 heterocycle has been recognized as a "drug prejudice" scaffold for its wide range of applications in medicinal chemistry. A few examples of imidazo[1,2-a]pyridine exhibit significant activity against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Here, we critically review anti-TB compounds of the imidazo[1,2-a]pyridine class by discussing their development based on the structure-activity relationship, mode-of-action, and various scaffold hopping strategies over the last decade, which is identified as a renaissance era of TB drug discovery research.
Collapse
Affiliation(s)
- Sauvik Samanta
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town Rondebosch 7701 South Africa
| | - Sumit Kumar
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town Rondebosch 7701 South Africa
| | - Eswar K Aratikatla
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town Rondebosch 7701 South Africa
| | - Sandeep R Ghorpade
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town Rondebosch 7701 South Africa
| | - Vinayak Singh
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town Rondebosch 7701 South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Rondebosch 7701 South Africa
| |
Collapse
|
9
|
Kardynska M, Kogut D, Pacholczyk M, Smieja J. Mathematical modeling of regulatory networks of intracellular processes - Aims and selected methods. Comput Struct Biotechnol J 2023; 21:1523-1532. [PMID: 36851915 PMCID: PMC9958294 DOI: 10.1016/j.csbj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Regulatory networks structure and signaling pathways dynamics are uncovered in time- and resource consuming experimental work. However, it is increasingly supported by modeling, analytical and computational techniques as well as discrete mathematics and artificial intelligence applied to to extract knowledge from existing databases. This review is focused on mathematical modeling used to analyze dynamics and robustness of these networks. This paper presents a review of selected modeling methods that facilitate advances in molecular biology.
Collapse
Affiliation(s)
- Malgorzata Kardynska
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland
| | - Daria Kogut
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marcin Pacholczyk
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Jaroslaw Smieja
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
10
|
Gupta S, Kumawat S, Fatima Z, Priya, Chatterjee S. Quantitative analysis of the bioenergetics of Mycobacterium tuberculosis along with Glyoxylate cycle as a drug target under inhibition of enzymes using Petri net. Comput Biol Chem 2023; 104:107828. [PMID: 36893566 DOI: 10.1016/j.compbiolchem.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The bacteria Mycobacterium tuberculosis is responsible for the infectious disease Tuberculosis. Targeting the tubercule bacteria is an important challenge in developing the antimycobacterials. The glyoxylate cycle is considered as a potential target for the development of anti-tuberculosis agents, due to its absence in the humans. Humans only possess tricarboxylic acid cycle, while this cycle gets connected to glyoxylate cycle in microbes. Glyoxylate cycle is essential to the Mycobacterium for its growth and survival. Due to this reason, it is considered as a potential therapeutic target for the development of anti-tuberculosis agents. Here, we explore the effect on the behavior of the tricarboxylic acid cycle, glyoxylate cycle and their integrated pathway with the bioenergetics of the Mycobacterium, under the inhibition of key glyoxylate cycle enzymes using Continuous Petri net. Continuous Petri net is a special Petri net used to perform the quantitative analysis of the networks. We first study the tricarboxylic acid cycle and glyoxylate cycle of the tubercule bacteria by simulating its Continuous Petri net model under different scenarios. Both the cycles are then integrated with the bioenergetics of the bacteria and the integrated pathway is again simulated under different conditions. The simulation graphs show the metabolic consequences of inhibiting the key glyoxylate cycle enzymes and adding the uncouplers on the individual as well as integrated pathway. The uncouplers that inhibit the synthesis of adenosine triphosphate, play an important role as anti-mycobacterials. The simulation study done here validates the proposed Continuous Petri net model as compared with the experimental outcomes and also explains the consequences of the enzyme inhibition on the biochemical reactions involved in the metabolic pathways of the mycobacterium.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Mathematics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, India; Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Sunita Kumawat
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Zeeshan Fatima
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia; Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.
| | - Priya
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health science and Technology Institute, Faridabad, India.
| |
Collapse
|
11
|
Imran M, Arora MK, Chaudhary A, Khan SA, Kamal M, Alshammari MM, Alharbi RM, Althomali NA, Alzimam IM, Alshammari AA, Alharbi BH, Alshengeti A, Alsaleh AA, Alqahtani SA, Rabaan AA. MmpL3 Inhibition as a Promising Approach to Develop Novel Therapies against Tuberculosis: A Spotlight on SQ109, Clinical Studies, and Patents Literature. Biomedicines 2022; 10:2793. [PMID: 36359313 PMCID: PMC9687596 DOI: 10.3390/biomedicines10112793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Tuberculosis (TB) is accountable for considerable global morbidity and mortality. Effective TB therapy with multiple drugs completes in about six months. The longer duration of TB therapy challenges patient compliance and contributes to treatment collapse and drug resistance (DR) progress. Therefore, new medications with an innovative mechanism of action are desperately required to shorten the TB therapy's duration and effective TB control. The mycobacterial membrane protein Large 3 (MmpL3) is a novel, mycobacteria-conserved and recognized promiscuous drug target used in the development of better treatments for multi-drug resistance TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). This article spotlights MmpL3, the clinical studies of its inhibitor (SQ109), and the patent literature. The literature on MmpL3 inhibitors was searched on PubMed and freely available patent databases (Espacenet, USPTO, and PatentScope). SQ109, an analog of ethambutol (EMB), is an established MmpL3 inhibitor and has completed Phase 2b-3 clinical trials. Infectex and Sequella are developing orally active SQ109 in partnership to treat MDR pulmonary TB. SQ109 has demonstrated activity against drug-sensitive (DS) and drug-resistant (DR) Mycobacterium tuberculosis (Mtb) and a synergistic effect with isoniazid (INH), rifampicin (RIF), clofazimine (CFZ), and bedaquiline (BNQ). The combination of SQ109, clofazimine, bedaquiline, and pyrazinamide (PZA) has been patented due to its excellent anti-TB activity against MDR-TB, XDR-TB, and latent-TB. The combinations of SQ109 with other anti-TB drugs (chloroquine, hydroxychloroquine, and sutezolid) have also been claimed in the patent literature. SQ109 is more potent than EMB and could substitute EMB in the intensive stage of TB treatment with the three- or four-drug combination. Developing MmpL3 inhibitors is a promising approach to fighting the challenges associated with DS-TB and DR-TB. The authors foresee MmpL3 inhibitors such as SQ109 as future drugs for TB treatment.
Collapse
Affiliation(s)
- Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal Mutlaq Alshammari
- Pharmacy Department, Hotat Bani Tamim General Hospital, Hotat Bani Tamim 16631, Saudi Arabia
| | | | | | | | | | | | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | | | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
12
|
Sun M, Ge S, Li Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022; 10:biomedicines10102592. [PMID: 36289854 PMCID: PMC9599588 DOI: 10.3390/biomedicines10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Collapse
Affiliation(s)
- Manluan Sun
- School of Medicine, Shanxi Datong University, Datong 037009, China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence:
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China
| | - Zhaoyang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of (Quinazoline 4-yloxy)acetamide and (4-oxoquinazoline-3(4H)-yl)acetamide derivatives as inhibitors of Mycobacterium tuberculosis bd oxidase. Eur J Med Chem 2022; 242:114639. [DOI: 10.1016/j.ejmech.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
14
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
15
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
16
|
Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production. Metabolites 2022; 12:metabo12050428. [PMID: 35629932 PMCID: PMC9145305 DOI: 10.3390/metabo12050428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a lipid-soluble compound with important physiological functions and is sought after in the food and cosmetic industries owing to its antioxidant properties. In our previous proof of concept, we engineered for CoQ10 biosynthesis the industrially relevant Corynebacterium glutamicum, which does not naturally synthesize any CoQ. Here, liquid chromatography–mass spectrometry (LC–MS) analysis identified two metabolic bottlenecks in the CoQ10 production, i.e., low conversion of the intermediate 10-prenylphenol (10P-Ph) to CoQ10 and the accumulation of isoprenologs with prenyl chain lengths of not only 10, but also 8 to 11 isopentenyl units. To overcome these limitations, the strain was engineered for expression of the Ubi complex accessory factors UbiJ and UbiK from Escherichia coli to increase flux towards CoQ10, and by replacement of the native polyprenyl diphosphate synthase IspB with a decaprenyl diphosphate synthase (DdsA) to select for prenyl chains with 10 isopentenyl units. The best strain UBI6-Rs showed a seven-fold increased CoQ10 content and eight-fold increased CoQ10 titer compared to the initial strain UBI4-Pd, while the abundance of CoQ8, CoQ9, and CoQ11 was significantly reduced. This study demonstrates the application of the recent insight into CoQ biosynthesis to improve metabolic engineering of a heterologous CoQ10 production strain.
Collapse
|
17
|
Friedrich T, Wohlwend D, Borisov VB. Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. Int J Mol Sci 2022; 23:ijms23063166. [PMID: 35328590 PMCID: PMC8951039 DOI: 10.3390/ijms23063166] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cytochrome bd is a triheme copper-free terminal oxidase in membrane respiratory chains of prokaryotes. This unique molecular machine couples electron transfer from quinol to O2 with the generation of a proton motive force without proton pumping. Apart from energy conservation, the bd enzyme plays an additional key role in the microbial cell, being involved in the response to different environmental stressors. Cytochrome bd promotes virulence in a number of pathogenic species that makes it a suitable molecular drug target candidate. This review focuses on recent advances in understanding the structure of cytochrome bd and the development of its selective inhibitors.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Tembe N, Machaba KE, Ndagi U, Kumalo HM, Mhlongo NN. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. J Mol Model 2022; 28:35. [PMID: 35022913 DOI: 10.1007/s00894-021-04993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.
Collapse
Affiliation(s)
- Ntombikayise Tembe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kgothatso E Machaba
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Umar Ndagi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Hezekiel M Kumalo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
19
|
Alvarez-Eraso KLF, Muñoz-Martínez LM, Alzate JF, Barrera LF, Baena A. Modulatory Impact of the sRNA Mcr11 in Two Clinical Isolates of Mycobacterium tuberculosis. Curr Microbiol 2022; 79:39. [PMID: 34982251 DOI: 10.1007/s00284-021-02733-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a successful pathogen causing tuberculosis (TB) disease in humans. It has been shown, that some circulating strains of Mtb in TB endemic populations, are more virulent and more transmissible than others, which may be related to their evolved adaptations to modulate the host immune responses. Underlying these adaptations to the stressful conditions, different genetic regulatory networks involved sRNAs that are mostly unknown for Mtb. We have previously shown that Mcr11 is one of the main sRNAs that determine transcriptomic differences among the Colombian clinical isolates UT127 and UT205 compared to the laboratory strain H37Rv. We found that the knock-down of mcr11 using CRISPRi has a major impact on phenotypic traits, especially in the clinical isolate UT205. Through the analysis of RNA-seq during the knock-down of mcr11 in UT205, we found a downregulation of genes mainly involved in lipid synthesis, lipid metabolism, ribosomal proteins, transport systems, respiratory and energy systems, membrane and cell wall components, intermediary metabolism, lipoproteins and virulence genes. One of the most interesting genes showing transcriptomic changes is OprA (encoded by the gene rv0516c), which has been involved in the K+ regulation. Overall, our data may suggest that one of the prominent roles of the sRNA Mcr11 is to regulate genes that control Mtb growth and osmoregulation.
Collapse
Affiliation(s)
| | | | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia
- Centro Nacional de Secuenciación Genómica-CNSG, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
- Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia.
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia.
- Sede de Investigación Universitaria-SIU, Medellín, Colombia.
| |
Collapse
|
20
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
21
|
Li Y, Fu L, Zhang W, Chen X, Lu Y. The Transcription Factor Rv1453 Regulates the Expression of qor and Confers Resistant to Clofazimine in Mycobacterium tuberculosis. Infect Drug Resist 2021; 14:3937-3948. [PMID: 34594117 PMCID: PMC8478341 DOI: 10.2147/idr.s324043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Objective Clofazimine plays an important role in the treatment of drug-resistant tuberculosis. However, the mechanism of clofazimine resistance remains unclear. In order to slow down the occurrence of clofazimine resistance, it is necessary to study its resistance mechanism. Methods In this study, we constructed Rv1453 knockout, complementary and overexpressed strain. The minimum inhibitory concentration (MIC) of clofazimine against Mycobacterium tuberculosis was detected by microplate alamar blue assay (MABA). The transcription levels of Rv1453 and its adjacent genes were detected by quantitative reverse transcriptase PCR. The purified Rv1453 protein was used for electrophoretic mobility shift assay (EMSA) to identify the binding site of Rv1453 protein. Results The minimum inhibitory concentration (MIC) of clofazimine increased about 4-fold for the Rv1453 knockout strain and decreased about 4-fold for the Rv1453 overexpressed strain compared with Mycobacterium tuberculosis H37Rv. Further analysis showed that Rv1453 protein, as a regulatory protein, binds to the RNA polymerase binding site of qor and blocks the transcription process. Conclusion This study preliminarily revealed that Rv1453 protein of Mycobacterium tuberculosis affects its susceptibility to clofazimine by regulating the transcription level of qor, which is shedding a new light on the mechanism of clofazimine resistance.
Collapse
Affiliation(s)
- Yuanyuan Li
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Lei Fu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Weiyan Zhang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Xi Chen
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| |
Collapse
|
22
|
Patil V, Jain V. Understanding Metabolic Remodeling in Mycobacterium smegmatis to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State. Front Microbiol 2021; 12:722229. [PMID: 34539614 PMCID: PMC8440910 DOI: 10.3389/fmicb.2021.722229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Mycobacteria such as Mycobacterium tuberculosis, the causative agent of tuberculosis that annually kills several million people worldwide, and Mycobacterium smegmatis, the non-pathogenic fast-growing mycobacteria, require oxidative phosphorylation to meet their energy requirements. We have previously shown that deletion of one of the two copies of atpD gene that codes for the ATP synthase β-subunit establishes an energy-compromised state in M. smegmatis. Here we report that upon such deletion, a major routing of electron flux occurs through the less energy-efficient complexes of its respiratory chain. ΔatpD bacterium also shows an increased reduced state which is further confirmed by the overexpression of WhiB3, a major redox sensor. We show a substantial modulation of the biosynthesis of cell wall associated lipids and triacylglycerol (TAG). An accumulation of TAG-containing lipid bodies is further confirmed by using 14C oleate incorporation. Interestingly, the mutant also shows an overexpression of TAG-degrading lipase genes, and the intracellular lipolytic enzymes mediate TAG hydrolysis for their utilization as energy source. We believe that our in vitro energy-depleted model will allow us to explore the critical link between energy metabolism, redox homeostasis, and lipid biosynthesis during ATP-depleted state, which will enhance our understanding of the bacterial adaptation, and will allow us to identify novel drug targets to counter mycobacterial infections.
Collapse
Affiliation(s)
- Varsha Patil
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
23
|
Gupta S, Fatima Z, Kumawat S. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. Biosystems 2021; 209:104509. [PMID: 34461147 DOI: 10.1016/j.biosystems.2021.104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 02/02/2023]
Abstract
Tuberculosis is one of the life-threatening diseases globally, caused by the bacteria Mycobacterium tuberculosis. In order to control this epidemic globally, there is an urgent need to discover new drugs with novel mechanism of action that can help in shortening the duration of treatment for both drug resistant and drug sensitive tuberculosis. Mycobacterium essentially depends on oxidative phosphorylation for its growth and establishment of pathogenesis. This pathway is unique in Mycobacterium tuberculosis as compared to host due to the differences in some of the enzyme complexes carrying electron transfer. Hence, it serves as an important drug target area. The uncouplers which inhibit adenosine triphosphate synthesis, could play a vital role in serving as antimycobacterial agents and thus could help in eradicating this deadly disease. In this article, the bioenergetics of Mycobacterium tuberculosis are studied with and without uncouplers using Petri net. Petri net is among the most widely used mathematical and computational tools to model and study the complex biochemical networks. We first represented the bioenergetic pathway as a Petri net which is then validated and analyzed using invariant analysis techniques of Petri net. The valid mathematical models presented here are capable to explain the molecular mechanism of uncouplers and the processes occurring within the electron transport chain of Mycobacterium tuberculosis. The results explained the net behavior in agreement with the biological results and also suggested some possible processes and pathways to be studied as a drug target for developing antimycobacterials.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.
| | - Sunita Kumawat
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| |
Collapse
|
24
|
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet JL, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz-Oesterhelt H, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr CM, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, van Dongen M, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021; 5:726-749. [PMID: 34426795 PMCID: PMC8374425 DOI: 10.1038/s41570-021-00313-1] [Citation(s) in RCA: 564] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
Collapse
Affiliation(s)
- Marcus Miethke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Marco Pieroni
- Food and Drug Department, University of Parma, Parma, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mark Brönstrup
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Peter Hammann
- Infectious Diseases & Natural Product Research at EVOTEC, and Justus Liebig University Giessen, Giessen, Germany
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Microbiology Department, Institut Pasteur, CNRS UMR3525, Paris, France
| | | | - Helge B. Bode
- Department of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, Marburg, Germany
| | - Rui Moreira
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Yanyan Li
- Unit MCAM, CNRS, National Museum of Natural History (MNHN), Paris, France
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC) & Microbiology Department, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Stadler
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | | | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group, Université de Lorraine, CNRS, IMoPA, Nancy, France
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Evi Stegmann
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Seemann
- Institute for Chemistry UMR 7177, University of Strasbourg/CNRS, ITI InnoVec, Strasbourg, France
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Timo Jaeger
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Silke Alt
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | | | - Andrea Schiefer
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Heather Graz
- Biophys Ltd., Usk, Monmouthshire, United Kingdom
| | - Michael Graz
- School of Law, University of Bristol, Bristol, United Kingdom
| | | | | | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Hrvoje Petkovic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | | | | | - Laurent Fraisse
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Laura J. V. Piddock
- The Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Heinz E. Moser
- Novartis Institutes for BioMedical Research (NIBR), Emeryville, CA USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
25
|
Abstract
ATP/ADP depicts the bioenergetic state of Mycobacterium tuberculosis (Mtb). However, the metabolic state of Mtb during infection remains poorly defined due to the absence of appropriate tools. Perceval HR (PHR) was recently developed to measure intracellular ATP/ADP levels, but it cannot be employed in mycobacterial cells due to mycobacterial autofluorescence. Here, we reengineered the ATP/ADP sensor Perceval HR into PHR-mCherry to analyze ATP/ADP in fast- and slow-growing mycobacteria. ATP/ADP reporter strains were generated through the expression of PHR-mCherry. Using the Mtb reporter strain, we analyzed the changes in ATP/ADP levels in response to antimycobacterial agents. As expected, bedaquiline induced a decrease in ATP/ADP. Interestingly, the transcriptional inhibitor rifampicin led to the depletion of ATP/ADP levels, while the cell wall synthesis inhibitor isoniazid did not affect the ATP/ADP levels in Mtb. The usage of this probe revealed that Mtb faces depletion of ATP/ADP levels upon phagocytosis. Furthermore, we observed that the activation of macrophages with interferon gamma and lipopolysaccharides leads to metabolic stress in intracellular Mtb. Examination of the bioenergetics of mycobacteria residing in subvacuolar compartments of macrophages revealed that the bacilli residing in phagolysosomes and autophagosomes have significantly less ATP/ADP than the bacilli residing in phagosomes. These observations indicate that phagosomes represent a niche for metabolically active Mtb, while autophagosomes and phagolysosomes harbor metabolically quiescent bacilli. Interestingly, even in activated macrophages, Mtb residing in phagosomes remains metabolically active. We further observed that macrophage activation affects the metabolic state of intracellular Mtb through the trafficking of Mtb from phagosomes to autophagosomes and phagolysosomes.
Collapse
|
26
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Chen BC, Ding ZS, Dai JS, Chen NP, Gong XW, Ma LF, Qian CD. New Insights Into the Antibacterial Mechanism of Cryptotanshinone, a Representative Diterpenoid Quinone From Salvia miltiorrhiza Bunge. Front Microbiol 2021; 12:647289. [PMID: 33717044 PMCID: PMC7950322 DOI: 10.3389/fmicb.2021.647289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid rise of antibiotic resistance causes an urgent need for new antimicrobial agents with unique and different mechanisms of action. The respiratory chain is one such target involved in the redox balance and energy metabolism. As a natural quinone compound isolated from the root of Salvia miltiorrhiza Bunge, cryptotanshinone (CT) has been previously demonstrated against a wide range of Gram-positive bacteria including multidrug-resistant pathogens. Although superoxide radicals induced by CT are proposed to play an important role in the antibacterial effect of this agent, its mechanism of action is still unclear. In this study, we have shown that CT is a bacteriostatic agent rather than a bactericidal agent. Metabolome analysis suggested that CT might act as an antibacterial agent targeting the cell membrane. CT did not cause severe damage to the bacterial membrane but rapidly dissipated membrane potential, implying that this compound could be a respiratory chain inhibitor. Oxygen consumption analysis in staphylococcal membrane vesicles implied that CT acted as respiratory chain inhibitor probably by targeting type II NADH:quinone dehydrogenase (NDH-2). Molecular docking study suggested that the compound would competitively inhibit the binding of quinone to NDH-2. Consistent with the hypothesis, the antimicrobial activity of CT was blocked by menaquinone, and the combination of CT with thioridazine but not 2-n-heptyl-4-hydroxyquinoline-N-oxide exerted synergistic activity against Staphylococcus aureus. Additionally, combinations of CT with other inhibitors targeting different components of the bacterial respiratory chain exhibit potent synergistic activities against S. aureus, suggesting a promising role in combination therapies.
Collapse
Affiliation(s)
- Bo-Chen Chen
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Sheng Dai
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xing-Wen Gong
- Department of Biological Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chao-Dong Qian
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis. Nat Commun 2020; 11:6092. [PMID: 33257709 PMCID: PMC7705017 DOI: 10.1038/s41467-020-19959-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using 13C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis.
Collapse
|
29
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
30
|
Arora G, Bothra A, Prosser G, Arora K, Sajid A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 2020; 288:3375-3393. [PMID: 33021056 DOI: 10.1111/febs.15582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the primary causes of deaths due to infectious diseases. The current TB regimen is long and complex, failing of which leads to relapse and/or the emergence of drug resistance. There is a critical need to understand the mechanisms of resistance development. With increasing drug pressure, Mycobacterium tuberculosis (Mtb) activates various pathways to counter drug-related toxicity. Signaling modules steer the evolution of Mtb to a variant that can survive, persist, adapt, and emerge as a form that is resistant to one or more drugs. Recent studies reveal that about 1/3rd of the annotated Mtb proteome is modified post-translationally, with a large number of these proteins being essential for mycobacterial survival. Post-translational modifications (PTMs) such as phosphorylation, acetylation, and pupylation play a salient role in mycobacterial virulence, pathogenesis, and metabolism. The role of many other PTMs is still emerging. Understanding the signaling pathways and PTMs may assist clinical strategies and drug development for Mtb. In this review, we explore the contribution of PTMs to mycobacterial physiology, describe the related cellular processes, and discuss how these processes are linked to drug resistance. A significant number of drug targets, InhA, RpoB, EmbR, and KatG, are modified at multiple residues via PTMs. A better understanding of drug-resistance regulons and associated PTMs will aid in developing effective drugs against TB.
Collapse
Affiliation(s)
- Gunjan Arora
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ankur Bothra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gareth Prosser
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Kriti Arora
- Proteus Digital Health, Inc., Redwood City, CA, USA
| | - Andaleeb Sajid
- Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Yimer SA, Kalayou S, Homberset H, Birhanu AG, Riaz T, Zegeye ED, Lutter T, Abebe M, Holm-Hansen C, Aseffa A, Tønjum T. Lineage-Specific Proteomic Signatures in the Mycobacterium tuberculosis Complex Reveal Differential Abundance of Proteins Involved in Virulence, DNA Repair, CRISPR-Cas, Bioenergetics and Lipid Metabolism. Front Microbiol 2020; 11:550760. [PMID: 33072011 PMCID: PMC7536270 DOI: 10.3389/fmicb.2020.550760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/17/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the discovery of the tubercle bacillus more than 130 years ago, its physiology and the mechanisms of virulence are still not fully understood. A comprehensive analysis of the proteomes of members of the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages 3, 4, 5, and 7 was conducted to better understand the evolution of virulence and other physiological characteristics. Unique and shared proteomic signatures in these modern, pre-modern and ancient MTBC lineages, as deduced from quantitative bioinformatics analyses of high-resolution mass spectrometry data, were delineated. The main proteomic findings were verified by using immunoblotting. In addition, analysis of multiple genome alignment of members of the same lineages was performed. Label-free peptide quantification of whole cells from MTBC lineages 3, 4, 5, and 7 yielded a total of 38,346 unique peptides derived from 3092 proteins, representing 77% coverage of the predicted proteome. MTBC lineage-specific differential expression was observed for 539 proteins. Lineage 7 exhibited a markedly reduced abundance of proteins involved in DNA repair, type VII ESX-3 and ESX-1 secretion systems, lipid metabolism and inorganic phosphate uptake, and an increased abundance of proteins involved in alternative pathways of the TCA cycle and the CRISPR-Cas system as compared to the other lineages. Lineages 3 and 4 exhibited a higher abundance of proteins involved in virulence, DNA repair, drug resistance and other metabolic pathways. The high throughput analysis of the MTBC proteome by super-resolution mass spectrometry provided an insight into the differential expression of proteins between MTBC lineages 3, 4, 5, and 7 that may explain the slow growth and reduced virulence, metabolic flexibility, and the ability to survive under adverse growth conditions of lineage 7.
Collapse
Affiliation(s)
- Solomon Abebe Yimer
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | - Shewit Kalayou
- Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alemayehu Godana Birhanu
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tahira Riaz
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ephrem Debebe Zegeye
- NORCE Norwegian Research Centre AS, Centre for Applied Biotechnology, Bergen, Norway
| | - Timo Lutter
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Carol Holm-Hansen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Mavi PS, Singh S, Kumar A. Reductive Stress: New Insights in Physiology and Drug Tolerance of Mycobacterium. Antioxid Redox Signal 2020; 32:1348-1366. [PMID: 31621379 DOI: 10.1089/ars.2019.7867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance:Mycobacterium tuberculosis (Mtb) encounters reductive stress during its infection cycle. Notably, host-generated protective responses, such as acidic pH inside phagosomes and lysosomes, exposure to glutathione in alveolar hypophase (i.e., a thin liquid lining consisting of surfactant and proteins in the alveolus), and hypoxic environments inside granulomas are associated with the accumulation of reduced cofactors, such as nicotinamide adenine dinucleotide (reduced form), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (reduced form), and nonprotein thiols (e.g., mycothiol), leading to reductive stress in Mtb cells. Dissipation of this reductive stress is important for survival of the bacterium. If reductive stress is not dissipated, it leads to generation of reactive oxygen species, which may be fatal for the cells. Recent Advances: This review focuses on mechanisms utilized by mycobacteria to sense and respond to reductive stress. Importantly, exposure of Mtb cells to reductive stress leads to growth inhibition, altered metabolism, modulation of virulence, and drug tolerance. Mtb is equipped with thiol buffering systems of mycothiol and ergothioneine to protect itself from various redox stresses. These systems are complemented by thioredoxin and thioredoxin reductase (TR) systems for maintaining cellular redox homeostasis. A diverse array of sensors is used by Mycobacterium for monitoring its intracellular redox status. Upon sensing reductive stress, Mtb uses a flexible and robust metabolic system for its dissipation. Branched electron transport chain allows Mycobacterium to function with different terminal electron acceptors and modulate proton motive force to fulfill energy requirements under diverse scenarios. Interestingly, Mtb utilizes variations in the tricarboxylic cycle and a number of dehydrogenases to dissipate reductive stress. Upon prolonged exposure to reductive stress, Mtb utilizes biosynthesis of storage and virulence lipids as a dissipative mechanism. Critical Issues: The mechanisms utilized by Mycobacterium for sensing and tackling reductive stress are not well characterized. Future Directions: The precise role of thiol buffering and TR systems in neutralizing reductive stress is not well defined. Genetic systems that respond to metabolic reductive stress and thiol reductive stress need to be mapped. Genetic screens could aid in identification of such systems. Given that management of reductive stress is critical for both actively replicating and persister mycobacteria, an improved understanding of the mechanisms used by mycobacteria for dissipation of reductive stress may lead to identification of vulnerable choke points that could be targeted for killing Mtb in vivo.
Collapse
Affiliation(s)
- Parminder Singh Mavi
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Shweta Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashwani Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
33
|
Gandhi K, Patel M. Collocating Novel Targets for Tuberculosis (TB) Drug Discovery. Curr Drug Discov Technol 2020; 18:307-316. [PMID: 31987022 DOI: 10.2174/1570163817666200121143036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis, being a resistive species is an incessant threat to the world population for the treatment of Tuberculosis (TB). An advanced genetic or a molecular level approach is mandatory for both diagnosis and therapy as the prevalence of multi drug-resistant (MDR) and extensively drug- resistant (XDR) TB. METHODS A literature review was conducted, focusing essentially on the development of biomarkers and targets to extrapolate the Tuberculosis Drug Discovery process. RESULTS AND DISCUSSION In this article, we have discussed several substantial targets and genetic mutations occurring in a diseased or treatment condition of TB patients. It includes expressions in Bhlhe40, natural resistance associated macrophage protein 1 (NRAMP1) and vitamin D receptor (VDR) with its mechanistic actions that have made a significant impact on TB. Moreover, recently identified compounds; imidazopyridine amine derivative (Q203), biphenyl amide derivative (DG70), azetidine, thioquinazole, tetrahydroindazole and 2- mercapto- quinazoline scaffolds for several targets such as adenosine triphosphate (ATP), amino acid and fatty acid have been briefed for their confirmed hits and therapeutic activity.
Collapse
Affiliation(s)
- Karan Gandhi
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat campus, Changa, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat Campus, Changa, Gujarat, India
| |
Collapse
|
34
|
Adewumi AT, Soremekun OS, Ajadi MB, Soliman MES. Thompson loop: opportunities for antitubercular drug design by targeting the weak spot in demethylmenaquinone methyltransferase protein. RSC Adv 2020; 10:23466-23483. [PMID: 35520325 PMCID: PMC9054810 DOI: 10.1039/d0ra03206a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Graphical superimposed snapshots of the Thompson novel loop (yellow) of menG protein: apo (A) and bound (B) systems. The loop switches between open and closed conformations; critical for therapeutic activity.
Collapse
Affiliation(s)
- Adeniyi T. Adewumi
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Opeyemi S. Soremekun
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mary B. Ajadi
- Department of Medical Biochemistry
- School of Laboratory Medicine and Medical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
35
|
Ofori-Anyinam B, Riley AJ, Jobarteh T, Gitteh E, Sarr B, Faal-Jawara TI, Rigouts L, Senghore M, Kehinde A, Onyejepu N, Antonio M, de Jong BC, Gehre F, Meehan CJ. Comparative genomics shows differences in the electron transport and carbon metabolic pathways of Mycobacterium africanum relative to Mycobacterium tuberculosis and suggests an adaptation to low oxygen tension. Tuberculosis (Edinb) 2020; 120:101899. [PMID: 32090860 PMCID: PMC7049902 DOI: 10.1016/j.tube.2020.101899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
Abstract
The geographically restricted Mycobacterium africanum lineages (MAF) are primarily found in West Africa, where they account for a significant proportion of tuberculosis. Despite this phenomenon, little is known about the co-evolution of these ancient lineages with West Africans. MAF and M. tuberculosis sensu stricto lineages (MTB) differ in their clinical, in vitro and in vivo characteristics for reasons not fully understood. Therefore, we compared genomes of 289 MAF and 205 MTB clinical isolates from the 6 main human-adapted M. tuberculosis complex lineages, for mutations in their Electron Transport Chain and Central Carbon Metabolic pathway in order to explain these metabolic differences. Furthermore, we determined, in silico, whether each mutation could affect the function of genes encoding enzymes in these pathways. We found more mutations with the potential to affect enzymes in these pathways in MAF lineages compared to MTB lineages. We also found that similar mutations occurred in these pathways between MAF and some MTB lineages. Generally, our findings show further differences between MAF and MTB lineages that may have contributed to the MAF clinical and growth phenotype and indicate potential adaptation of MAF lineages to a distinct ecological niche, which we suggest includes areas characterized by low oxygen tension.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Center for Global Health Security and Diplomacy, Ottawa, Canada
| | - Abi Janet Riley
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Tijan Jobarteh
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Ensa Gitteh
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Binta Sarr
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | | | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Madikay Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Aderemi Kehinde
- Department of Medical Microbiology & Parasitology, University College Hospital, Ibadan, Nigeria; Department of Medical Microbiology & Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nneka Onyejepu
- Center for Tuberculosis Research, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Division of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Medical School, University of Warwick, Coventry, United Kingdom
| | - Bouke C de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Florian Gehre
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Conor J Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; School of Chemistry and Biosciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
36
|
Roy KK, Wani MA. Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opin Drug Discov 2019; 15:231-241. [PMID: 31774006 DOI: 10.1080/17460441.2020.1696771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Tuberculosis (TB) is a leading infectious disease worldwide whose chemotherapy is challenged by the continued rise of drug resistance. This epidemic urges the need to discover anti-TB drugs with novel modes of action.Areas covered: The mycobacterial electron transport chain (ETC) pathway represents a hub of anti-TB drug targets. Herein, the authors highlight the various targets within the mycobacterial ETC and highlight some of the promising ETC-targeted drugs and clinical candidates that have been discovered or repurposed. Furthermore, recent breakthroughs in the availability of X-ray and/or cryo-EM structures of some targets are discussed, and various opportunities of exploiting these structures for the discovery of new anti-TB drugs are emphasized.Expert opinion: The drug discovery efforts targeting the ETC pathway have led to the FDA approval of bedaquiline, a FOF1-ATP synthase inhibitor, and the discovery of Q203, a clinical candidate drug targeting the mycobacterial cytochrome bcc-aa3 supercomplex. Moreover, clofazimine, a proposed prodrug competing with menaquinone for its reduction by mycobacterial NADH dehydrogenase 2, has been repurposed for TB treatment. Recently available structures of the mycobacterial ATP synthase C9 rotary ring and the cytochrome bcc-aa3 supercomplex represent further opportunities for the structure-based drug design (SBDD) of the next-generation of inhibitors against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Kuldeep K Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
37
|
Mascolo L, Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:55-63. [PMID: 31738981 DOI: 10.1016/j.pbiomolbio.2019.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
The branched respiratory chain of Mycobacterium tuberculosis has attracted attention as a highly promising target for next-generation antibacterials. This system includes two terminal oxidases of which the exclusively bacterial cytochrome bd represents the less energy-efficient one. Albeit dispensable for growth under standard laboratory conditions, cytochrome bd is important during environmental stress. In this review, we discuss the role of cytochrome bd during infection of the mammalian host and in the defense against antibacterials. Deeper insight into the biochemistry of mycobacterial cytochrome bd is needed to understand the physiological role of this bacteria-specific defense factor. Conversely, cytochrome bd may be utilized to gain information on mycobacterial physiology in vitro and during host infection. Knowledge-based manipulation of cytochrome bd function may assist in designing the next-generation tuberculosis combination chemotherapy.
Collapse
Affiliation(s)
- Ludovica Mascolo
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State. J Bacteriol 2019; 201:JB.00210-19. [PMID: 31285242 DOI: 10.1128/jb.00210-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis, a bacterium that causes tuberculosis, poses a serious threat, especially due to the emergence of drug-resistant strains. M. tuberculosis and other mycobacterial species, such as M. smegmatis, are known to generate an inadequate amount of energy by substrate-level phosphorylation and mandatorily require oxidative phosphorylation (OXPHOS) for their growth and metabolism. Hence, antibacterial drugs, such as bedaquiline, targeting the multisubunit ATP synthase complex, which is required for OXPHOS, have been developed with the aim of eliminating pathogenic mycobacteria. Here, we explored the influence of suboptimal OXPHOS on the physiology and metabolism of M. smegmatis M. smegmatis harbors two identical copies of atpD, which codes for the β subunit of ATP synthase. We show that upon deletion of one copy of atpD (M. smegmatis ΔatpD), M. smegmatis synthesizes smaller amounts of ATP and enters into an energy-compromised state. The mutant displays remarkable phenotypic and physiological differences from the wild type, such as respiratory slowdown, reduced biofilm formation, lesser amounts of cell envelope polar lipids, and increased antibiotic sensitivity compared to the wild type. Additionally, M. smegmatis ΔatpD overexpresses genes belonging to the dormancy operon, the β-oxidation pathway, and the glyoxylate shunt, suggesting that the mutant adapts to a low energy state by switching to alternative pathways to produce energy. Interestingly, M. smegmatis ΔatpD shows significant phenotypic, metabolic, and physiological similarities with bedaquiline-treated wild-type M. smegmatis We believe that the identification and characterization of key metabolic pathways functioning during an energy-compromised state will enhance our understanding of bacterial adaptation and survival and will open newer avenues in the form of drug targets that may be used in the treatment of mycobacterial infections.IMPORTANCE M. smegmatis generates an inadequate amount of energy by substrate-level phosphorylation and mandatorily requires oxidative phosphorylation (OXPHOS) for its growth and metabolism. Here, we explored the influence of suboptimal OXPHOS on M. smegmatis physiology and metabolism. M. smegmatis harbors two identical copies of the atpD gene, which codes for the ATP synthase β subunit. Here, we carried out the deletion of only one copy of atpD in M. smegmatis to understand the bacterial survival response in an energy-deprived state. M. smegmatis ΔatpD shows remarkable phenotypic, metabolic, and physiological differences from the wild type. Our study thus establishes M. smegmatis ΔatpD as an energy-compromised mycobacterial strain, highlights the importance of ATP synthase in mycobacterial physiology, and further paves the way for the identification of novel antimycobacterial drug targets.
Collapse
|
39
|
Ibraim IC, Parise MTD, Parise D, Sfeir MZT, de Paula Castro TL, Wattam AR, Ghosh P, Barh D, Souza EM, Góes-Neto A, Gomide ACP, Azevedo V. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genomics 2019; 20:663. [PMID: 31429699 PMCID: PMC6701010 DOI: 10.1186/s12864-019-6018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.
Collapse
Affiliation(s)
- Izabela Coimbra Ibraim
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Teixeira Dornelles Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Doglas Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thiago Luiz de Paula Castro
- Departamento de Biointeração, Instituto de Ciências da Saude, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Preetam Ghosh
- Department of Computer Science, Biological Networks Lab, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Emannuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
40
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
41
|
Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. Int J Mol Sci 2019; 20:ijms20122868. [PMID: 31212777 PMCID: PMC6627145 DOI: 10.3390/ijms20122868] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
The ever-increasing incidence of drug-resistant Mycobacterium tuberculosis infections has invigorated the focus on the discovery and development of novel treatment options. The discovery and investigation of essential mycobacterial targets is of utmost importance. In addition to the discovery of novel targets, focusing on non-lethal pathways and the use of host-directed therapies has gained interest. These adjunctive treatment options could not only lead to increased antibiotic susceptibility of Mycobacterium tuberculosis, but also have the potential to avoid the emergence of drug resistance. Host-directed therapies, on the other hand, can also reduce the associated lung pathology and improve disease outcome. This review will provide an outline of recent opportunities.
Collapse
|
42
|
Khan SR, Venugopal U, Chandra G, Bharti S, Maurya RK, Krishnan MY. Effect of various drugs on differentially detectable persisters of Mycobacterium tuberculosis generated by long-term lipid diet. Tuberculosis (Edinb) 2019; 115:89-95. [PMID: 30948182 DOI: 10.1016/j.tube.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Persisters of Mycobacterium tuberculosis (Mtb) that fail to form colonies on agar media when de-stressed are termed as differentially detectable (DD) persisters. Since in the host, Mtb primarily survives by utilizing lipids, we used a long-term lipid diet model to induce DD persisters of M. tuberculosis. Persisters were induced by replacing the dextrose-containing medium with one containing fatty acids instead of dextrose (FAM). After 2, 4 or 6 weeks, CFU and most probable number assays were performed; the difference between the two gave an estimate of DD persisters. Since rifampicin has been shown to induce formation of DD persisters in vitro, one set of FAM cultures were also given short-term rifampicin stress after 2, 4 or 6 weeks. Fraction of DD persisters increased with time and rifampicin treatment enhanced the effect of fatty acids, at 2 and 4 weeks. At six weeks, even in the absence of rifampicin, ∼95% population were DD persisters. The DD persisters were vulnerable to drugs interfering with bacterial respiration such as thioridazine, bedaquiline and clofazimine. The study indicates potential formation of DD persisters of Mtb in a lipid-rich microenvironment in the host even before antibiotic therapy.
Collapse
Affiliation(s)
- Shaheb Raj Khan
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Umamageswaran Venugopal
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Gyan Chandra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Suman Bharti
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Rahul Kumar Maurya
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Manju Yasoda Krishnan
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India.
| |
Collapse
|
43
|
Role of Oxidative Stress in the Pathology and Management of Human Tuberculosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7695364. [PMID: 30405878 PMCID: PMC6201333 DOI: 10.1155/2018/7695364] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is the leading cause of mortality worldwide due to a single infectious agent. The pathogen spreads primarily via aerosols and especially infects the alveolar macrophages in the lungs. The lung has evolved various biological mechanisms, including oxidative stress (OS) responses, to counteract TB infection. M. tuberculosis infection triggers the generation of reactive oxygen species by host phagocytic cells (primarily macrophages). The development of resistance to commonly prescribed antibiotics poses a challenge to treat TB; this commonly manifests as multidrug resistant tuberculosis (MDR-TB). OS and antioxidant defense mechanisms play key roles during TB infection and treatment. For instance, several established first-/second-line antitubercle antibiotics are administered in an inactive form and subsequently transformed into their active form by components of the OS responses of both host (nitric oxide, S-oxidation) and pathogen (catalase/peroxidase enzyme, EthA). Additionally, M. tuberculosis has developed mechanisms to survive high OS burden in the host, including the increased bacterial NADH/NAD+ ratio and enhanced intracellular survival (Eis) protein, peroxiredoxin, superoxide dismutases, and catalases. Here, we review the interplay between lung OS and its effects on both activation of antitubercle antibiotics and the strategies employed by M. tuberculosis that are essential for survival of both drug-susceptible and drug-resistant bacterial subtypes. We then outline potential new therapies that are based on combining standard antitubercular antibiotics with adjuvant agents that could limit the ability of M. tuberculosis to counter the host's OS response.
Collapse
|
44
|
Machado D, Girardini M, Viveiros M, Pieroni M. Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis. Front Microbiol 2018; 9:1367. [PMID: 30018597 PMCID: PMC6037898 DOI: 10.3389/fmicb.2018.01367] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023] Open
Abstract
The emergence of multi- and extensively drug resistant tuberculosis worldwide poses a great threat to human health and highlight the need to discover and develop new, effective and inexpensive antituberculosis agents. High-throughput screening assays against well-validated drug targets and structure based drug design have been employed to discover new lead compounds. However, the great majority fail to demonstrate any antimycobacterial activity when tested against Mycobacterium tuberculosis in whole-cell screening assays. This is mainly due to some of the intrinsic properties of the bacilli, such as the extremely low permeability of its cell wall, slow growth, drug resistance, drug tolerance, and persistence. In this sense, understanding the pathways involved in M. tuberculosis drug tolerance, persistence, and pathogenesis, may reveal new approaches for drug development. Moreover, the need for compounds presenting a novel mode of action is of utmost importance due to the emergence of resistance not only to the currently used antituberculosis agents, but also to those in the pipeline. Cheminformatics studies have shown that drugs endowed with antituberculosis activity have the peculiarity of being more lipophilic than many other antibacterials, likely because this leads to improved cell penetration through the extremely waxy mycobacterial cell wall. Moreover, the interaction of the lipophilic moiety with the membrane alters its stability and functional integrity due to the disruption of the proton motive force, resulting in cell death. When a ligand-based medicinal chemistry campaign is ongoing, it is always difficult to predict whether a chemical modification or a functional group would be suitable for improving the activity. Nevertheless, in the “instruction manual” of medicinal chemists, certain functional groups or certain physicochemical characteristics (i.e., high lipophilicity) are considered red flags to look out for in order to safeguard drug-likeness and avoid attritions in the drug discovery process. In this review, we describe how antituberculosis compounds challenge established rules such as the Lipinski's “rule of five” and how medicinal chemistry for antituberculosis compounds must be thought beyond such dogmatic schemes.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Miriam Girardini
- P4T Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Marco Pieroni
- P4T Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|