1
|
Hill R, Grey M, Fedi MO, Smith D, Canning G, Ward SJ, Irish N, Smith J, McMillan VE, Hammond J, Osborne SJ, Reynolds G, Smith E, Chancellor T, Swarbreck D, Hall N, Palma-Guerrero J, Hammond-Kosack KE, McMullan M. Evolutionary genomics reveals variation in structure and genetic content implicated in virulence and lifestyle in the genus Gaeumannomyces. BMC Genomics 2025; 26:239. [PMID: 40075289 PMCID: PMC11905480 DOI: 10.1186/s12864-025-11432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Gaeumannomyces tritici is responsible for take-all disease, one of the most important wheat root threats worldwide. High-quality annotated genome resources are sorely lacking for this pathogen, as well as for the closely related antagonist and potential wheat take-all biocontrol agent, G. hyphopodioides. As such, we know very little about the genetic basis of the interactions in this host-pathogen-antagonist system. Using PacBio HiFi sequencing technology we have generated nine near-complete assemblies, including two different virulence lineages for G. tritici and the first assemblies for G. hyphopodioides and G. avenae (oat take-all). Genomic signatures support the presence of two distinct virulence lineages in G. tritici (types A and B), with A strains potentially employing a mechanism to prevent gene copy-number expansions. The CAZyme repertoire was highly conserved across Gaeumannomyces, while candidate secreted effector proteins and biosynthetic gene clusters showed more variability and may distinguish pathogenic and non-pathogenic lineages. A transition from self-sterility (heterothallism) to self-fertility (homothallism) may also be a key innovation implicated in lifestyle. We did not find evidence for transposable element and effector gene compartmentalisation in the genus, however the presence of Starship giant transposable elements may contribute to genomic plasticity in the genus. Our results depict Gaeumannomyces as an ideal system to explore interactions within the rhizosphere, the nuances of intraspecific virulence, interspecific antagonism, and fungal lifestyle evolution. The foundational genomic resources provided here will enable the development of diagnostics and surveillance of understudied but agriculturally important fungal pathogens.
Collapse
Affiliation(s)
- Rowena Hill
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| | - Michelle Grey
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - Daniel Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Sabrina J Ward
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Jade Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | | | - Sarah-Jane Osborne
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- AHDB, Siskin Parkway East, Middlemarch Business Park, Coventry, CV3 4PE, UK
| | | | - Ellie Smith
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Tania Chancellor
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Javier Palma-Guerrero
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Research Institute of Organic Agriculture Fibl, Frick, 5070, Switzerland
| | | | - Mark McMullan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| |
Collapse
|
2
|
Buttar ZA, Cheng M, Wei P, Zhang Z, Lv C, Zhu C, Ali NF, Kang G, Wang D, Zhang K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:1159. [PMID: 38674569 PMCID: PMC11053692 DOI: 10.3390/plants13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
Collapse
Affiliation(s)
- Zeeshan Ali Buttar
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Mengquan Cheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Panqin Wei
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziwei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenjia Zhu
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Nida Fatima Ali
- Department of Plant Biotechnology, Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
3
|
Xu J, Yang X, Wu C, Chen Z, Dai T. Recombinase Polymerase Amplification-Lateral Flow Dipstick Assay for Rapid Detection of Fusarium circinatum Based on a Newly Identified Unique Target Gene. PLANT DISEASE 2023; 107:1067-1074. [PMID: 36089688 DOI: 10.1094/pdis-04-22-0864-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pitch canker caused by the fungus Fusarium circinatum is an important disease affecting pine trees in Europe and South Africa. Several countries, including China, have listed F. circinatum as a quarantine pathogen. Therefore, timely detection of F. circinatum could efficiently prevent its introduction into new areas or facilitate spread management in already infected sites. In this study, a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay was developed for rapid detection of F. circinatum based on a new target gene, Fcir2067, identified from whole-genome sequences. The assay was highly specific to F. circinatum. In fact, it exclusively detected F. circinatum isolates; 53 isolates of fungal and oomycete species and 2 nematodes of Bursaphelenchus xylophilus and B. mucronatus were not detected. By detecting as little as 10 pg of F. circinatum genomic DNA in a 50-µl reaction, the RPA-LFD assay was 10 times more sensitive than conventional PCR assays. F. circinatum was also detected in artificially inoculated pine needles of Cedrus deodara. These results demonstrated that the developed RPA-LFD assay has the potential for rapid detection of F. circinatum in regions at high risk of infection. The RPA-LFD assay might serve as an alternative method for the early detection of F. circinatum.
Collapse
Affiliation(s)
- Jieying Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiao Yang
- Plant and Pest Diagnostic Clinic, Department of Plant Industry, Clemson University, Pendleton, SC, U.S.A
| | - Cuiping Wu
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Zhenpeng Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Lustig AJ. Investigating the origin of subtelomeric and centromeric AT-rich elements in Aspergillus flavus. PLoS One 2023; 18:e0279148. [PMID: 36758027 PMCID: PMC9910759 DOI: 10.1371/journal.pone.0279148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
An in silico study of Aspergillus flavus genome stability uncovered significant variations in both coding and non-coding regions. The non-coding insertions uniformly consisted of AT-rich sequences that are evolutionarily maintained, albeit distributed at widely different sites in an array of A. flavus strains. A survey of ≥ 2kb AT-rich elements (AT ≥ 70%; ATEs) in non-centromeric regions uncovered two major categories of ATEs. The first category is composed of homologous insertions at ectopic, non-allelic sites that contain homology to transposable elements (TEs; Classes B, C, D, and E). Strains differed significantly in frequency, position, and TE type, but displayed a common enrichment in subtelomeric regions. The TEs were heavily mutated, with patterns consistent with the ancestral activity of repeat-induced point mutations (RIP). The second category consists of a conserved set of novel subtelomeric ATE repeats (Classes A, G, G, H, I and J) which lack discernible TEs and, unlike TEs, display a constant polarity relative to the telomere. Members of one of these classes are derivatives of a progenitor ATE that is predicted to have undergone extensive homologous recombination during evolution. A third category of ATEs consists of ~100 kb regions at each centromere. Centromeric ATEs and TE clusters within these centromeres display a high level of sequence identity between strains. These studies suggest that transposition and RIP are forces in the evolution of subtelomeric and centromeric structure and function.
Collapse
Affiliation(s)
- Arthur J. Lustig
- Department of Biochemistry and Molecular Biology, Tulane University Medical School, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Characterization of Host-Specific Genes from Pine- and Grass-Associated Species of the Fusarium fujikuroi Species Complex. Pathogens 2022; 11:pathogens11080858. [PMID: 36014979 PMCID: PMC9415769 DOI: 10.3390/pathogens11080858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.
Collapse
|
6
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
7
|
Fulton JC, Yu PL, Smith KE, Huguet-Tapia JC, Hudson O, Meeks A, Quesada T, McKeever K, Brawner JT. Comparative Genomics of Fusarium circinatum Isolates Used to Screen Southern Pines for Pitch Canker Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:477-487. [PMID: 35266808 DOI: 10.1094/mpmi-10-21-0247-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pitch canker, caused by the fungal pathogen Fusarium circinatum, is a global disease affecting many Pinus spp. Often fatal, this disease causes significant mortality in both commercially grown and natural pine forests and is an issue of current and growing concern. F. circinatum isolates collected from three locations in the U.S. state of Florida were shown to be virulent on both slash and loblolly pine, with two of the isolates causing equivalent and significantly larger lesions than those caused by the third isolate during pathogenicity trials. In addition, significant genetic variation in lesion length in the pedigreed slash pine population was evident and rankings of parents for lesion length were similar across isolates. Experimental data demonstrate that both host and pathogen genetics contribute to disease severity. High-quality genomic assemblies of all three isolates were created and compared for structural differences and gene content. No major structural differences were observed among the isolates; however, missing or altered genes do contribute to genomic variation in the pathogen population. This work evaluates in planta virulence among three isolates of F. circinatum, provides genomic resources to facilitate study of this organism, and details comparative genomic methods that may be used to explore the pathogen's contribution to disease development.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- James C Fulton
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Katherine E Smith
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, U.S.A
- United States Department of Agriculture Forest Service, Southern Institute of Forest Genetics, Saucier, MS, U.S.A
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Owen Hudson
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | | | - Tania Quesada
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, U.S.A
| | - Kathleen McKeever
- United States Department of Agriculture Forest Service, Resistance Screening Center, Asheville, NC, U.S.A
| | - Jeremy T Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
8
|
Wilson AM, Lelwala RV, Taylor PWJ, Wingfield MJ, Wingfield BD. Unique patterns of mating pheromone presence and absence could result in the ambiguous sexual behaviors of Colletotrichum species. G3 (BETHESDA, MD.) 2021; 11:jkab187. [PMID: 34544120 PMCID: PMC8661429 DOI: 10.1093/g3journal/jkab187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/18/2021] [Indexed: 11/14/2022]
Abstract
Colletotrichum species are known to engage in unique sexual behaviors that differ significantly from the mating strategies of other filamentous ascomycete species. For example, most ascomycete fungi require the expression of both the MAT1-1-1 and MAT1-2-1 genes to induce sexual reproduction. In contrast, all isolates of Colletotrichum harbor only the MAT1-2-1 gene and yet, are capable of recognizing suitable mating partners and producing sexual progeny. The molecular mechanisms contributing to mating types and behaviors in Colletotrichum are, however, unknown. A comparative genomics approach analyzing 35 genomes, representing 31 Colletotrichum species and two Verticillium species, was used to elucidate a putative molecular mechanism underlying the unique sexual behaviors observed in Colletotrichum species. The existence of only the MAT1-2 idiomorph was confirmed across all species included in this study. Comparisons of the loci harboring the two mating pheromones and their cognate receptors revealed interesting patterns of gene presence and absence. The results showed that these genes have been lost multiple, independent times over the evolutionary history of this genus. These losses indicate that the pheromone pathway no longer plays an active role in mating type determination, suggesting an undiscovered mechanism by which mating partner recognition is controlled in these species. This further suggests that there has been a redirection of the underlying genetic mechanisms that regulate sexual development in Colletotrichum species. This research thus provides a foundation from which further interrogation of this topic can take place.
Collapse
Affiliation(s)
- Andi M Wilson
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Ruvini V Lelwala
- School of Agriculture and Food, Faculty of Veterinary and Agriculture Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul W J Taylor
- School of Agriculture and Food, Faculty of Veterinary and Agriculture Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| |
Collapse
|
9
|
van Wyk S, Wingfield BD, De Vos L, van der Merwe NA, Steenkamp ET. Genome-Wide Analyses of Repeat-Induced Point Mutations in the Ascomycota. Front Microbiol 2021; 11:622368. [PMID: 33597932 PMCID: PMC7882544 DOI: 10.3389/fmicb.2020.622368] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
The Repeat-Induced Point (RIP) mutation pathway is a fungus-specific genome defense mechanism that mitigates the deleterious consequences of repeated genomic regions and transposable elements (TEs). RIP mutates targeted sequences by introducing cytosine to thymine transitions. We investigated the genome-wide occurrence and extent of RIP with a sliding-window approach. Using genome-wide RIP data and two sets of control groups, the association between RIP, TEs, and GC content were contrasted in organisms capable and incapable of RIP. Based on these data, we then set out to determine the extent and occurrence of RIP in 58 representatives of the Ascomycota. The findings were summarized by placing each of the fungi investigated in one of six categories based on the extent of genome-wide RIP. In silico RIP analyses, using a sliding-window approach with stringent RIP parameters, implemented simultaneously within the same genetic context, on high quality genome assemblies, yielded superior results in determining the genome-wide RIP among the Ascomycota. Most Ascomycota had RIP and these mutations were particularly widespread among classes of the Pezizomycotina, including the early diverging Orbiliomycetes and the Pezizomycetes. The most extreme cases of RIP were limited to representatives of the Dothideomycetes and Sordariomycetes. By contrast, the genomes of the Taphrinomycotina and Saccharomycotina contained no detectable evidence of RIP. Also, recent losses in RIP combined with controlled TE proliferation in the Pezizomycotina subphyla may promote substantial genome enlargement as well as the formation of sub-genomic compartments. These findings have broadened our understanding of the taxonomic range and extent of RIP in Ascomycota and how this pathway affects the genomes of fungi harboring it.
Collapse
Affiliation(s)
| | | | | | | | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Fourie A, de Jonge R, van der Nest MA, Duong TA, Wingfield MJ, Wingfield BD, Barnes I. Genome comparisons suggest an association between Ceratocystis host adaptations and effector clusters in unique transposable element families. Fungal Genet Biol 2020; 143:103433. [PMID: 32652232 DOI: 10.1016/j.fgb.2020.103433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023]
Abstract
Ceratocystis fimbriata is a host specific fungal pathogen of sweet potato (Ipomoea batatas). The closely related species, C. manginecans, is an important pathogen of trees (e.g. Acacia mangium and Mangifera indica) but has never been isolated from tuber crops. The genetic factors that determine the host range and host specificity of these species have not been determined. The aim of this study was to compare the genomes of C. fimbriata and C. manginecans in order to identify species-specific genetic differences that could be associated with host specificity. This included whole-genome alignments as well as comparisons of gene content and transposable elements (TEs). The genomes of the two species were found to be very similar, sharing similar catalogues of CAZymes, peptidases and lipases. However, the genomes of the two species also varied, harbouring species-specific genes (e.g. small secreted effectors, nutrient processing proteins and stress response proteins). A portion of the TEs identified (17%) had a unique distribution in each species. Transposable elements appeared to have played a prominent role in the divergence of the two species because they were strongly associated with chromosomal translocations and inversions as well as with unique genomic regions containing species-specific genes. Two large effector clusters, with unique TEs in each species, were identified. These effectors displayed non-synonymous mutations and deletions, conserved within a species, and could serve as mutational hot-spots for the development of host specificity in the two species.
Collapse
Affiliation(s)
- Arista Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; Biotechnology Platform, Agricultural Research Council, Private Bag X05, Onderstepoort 0110, 0002, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|