1
|
Lan Y, Cong Q, Yu Q, Liu L, Cui X, Li X, Wang Q, Yang S, Yu H, Kong Y. Genome Sequencing of Three Pathogenic Fungi Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease on Cultivated Mushrooms. Foods 2024; 13:2779. [PMID: 39272544 PMCID: PMC11394773 DOI: 10.3390/foods13172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Fungal diseases not only reduce the yield of edible mushrooms but also pose potential threats to the preservation and quality of harvested mushrooms. Cobweb disease, caused primarily by fungal pathogens from the Hypocreaceae family, is one of the most significant diseases affecting edible mushrooms. Deciphering the genomes of these pathogens will help unravel the molecular basis of their evolution and identify genes responsible for pathogenicity. Here, we present high-quality genome sequences of three cobweb disease fungi: Hypomyces aurantius Cb-Fv, Cladobotryum mycophilum CB-Ab, and Cladobotryum protrusum CB-Mi, isolated from Flammulina velutipes, Agaricus bisporus, and Morchella importuna, respectively. The assembled genomes of H. aurantius, C. mycophilum, and C. protrusum are 33.19 Mb, 39.83 Mb, and 38.10 Mb, respectively. This is the first report of the genome of H. aurantius. Phylogenetic analysis revealed that cobweb disease pathogens are closely related and diverged approximately 17.51 million years ago. CAZymes (mainly chitinases, glucan endo-1,3-beta-glucosidases, and secondary metabolite synthases), proteases, KP3 killer proteins, lipases, and hydrophobins were found to be conserved and strongly associated with pathogenicity, virulence, and adaptation in the three cobweb pathogens. This study provides insights into the genome structure, genome organization, and pathogenicity of these three cobweb disease fungi, which will be a valuable resource for comparative genomics studies of cobweb pathogens and will help control this disease, thereby enhancing mushroom quality.
Collapse
Affiliation(s)
- Yufei Lan
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qianqian Cong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qingwei Yu
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Lin Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao Cui
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Xiumei Li
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qiao Wang
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Shuting Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yi Kong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| |
Collapse
|
2
|
Xie J, Liu X, Qin Z, Mei S, Tarafder E, Li C, Zeng X, Tian F. Evolution and related pathogenic genes of Pseudodiploöspora longispora on Morchella based on genomic characterization and comparative genomic analysis. Sci Rep 2024; 14:18588. [PMID: 39127740 PMCID: PMC11316761 DOI: 10.1038/s41598-024-69421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
True morels (Morchella) are globally renowned medicinal and edible mushrooms. White mold disease caused by fungi is the main disease of Morchella, which has the characteristics of wide incidence and strong destructiveness. The disparities observed in the isolation rates of different pathogens indicate their varying degrees of host adaptability and competitive survival abilities. In order to elucidate its potential mechanism, this study, the pathogen of white mold disease from Dafang county, Guizhou Province was isolated and purified, identified as Pseudodiploöspora longispora by morphological, molecular biological and pathogenicity tests. Furthermore, high-quality genome of P. longisporus (40.846 Mb) was assembled N50 of 3.09 Mb, predicts 7381 protein-coding genes. Phylogenetic analysis of single-copy homologous genes showed that P. longispora and Zelopaecilomyces penicillatus have the closest evolutionary relationship, diverging into two branches approximately 50 (44.3-61.4) MYA. Additionally, compared with the other two pathogens causing Morchella disease, Z. penicillatus and Cladobotryum protrusum, it was found that they had similar proportions of carbohydrate enzyme types and encoded abundant cell wall degrading enzymes, such as chitinase and glucanase, indicating their important role in disease development. Moreover, the secondary metabolite gene clusters of P. longispora and Z. penicillatus show a high degree of similarity to leucinostatin A and leucinostatin B (peptaibols). Furthermore, a gene cluster with synthetic toxic substance Ochratoxin A was also identified in P. longispora and C. protrusum, indicating that they may pose a potential threat to food safety. This study provides valuable insights into the genome of P. longispora, contributing to pathogenicity research.
Collapse
Affiliation(s)
- Jiangtao Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Xue Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Zaili Qin
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Shihui Mei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chao Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China.
- Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang, China.
- Institute of Edible Mushroom, Guizhou University, Guiyang, China.
- Tianiin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
3
|
Christinaki AC, Myridakis AI, Kouvelis VN. Genomic insights into the evolution and adaptation of secondary metabolite gene clusters in fungicolous species Cladobotryum mycophilum ATHUM6906. G3 (BETHESDA, MD.) 2024; 14:jkae006. [PMID: 38214578 PMCID: PMC10989895 DOI: 10.1093/g3journal/jkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Mycophilic or fungicolous fungi can be found wherever fungi exist since they are able to colonize other fungi, which occupy a diverse range of habitats. Some fungicolous species cause important diseases on Basidiomycetes, and thus, they are the main reason for the destruction of mushroom cultivations. Nonetheless, despite their ecological significance, their genomic data remain limited. Cladobotryum mycophilum is one of the most aggressive species of the genus, destroying the economically important Agaricus bisporus cultivations. The 40.7 Mb whole genome of the Greek isolate ATHUM6906 is assembled in 16 fragments, including the mitochondrial genome and 2 small circular mitochondrial plasmids, in this study. This genome includes a comprehensive set of 12,282 protein coding, 56 rRNA, and 273 tRNA genes. Transposable elements, CAZymes, and pathogenicity related genes were also examined. The genome of C. mycophilum contained a diverse arsenal of genes involved in secondary metabolism, forming 106 biosynthetic gene clusters, which renders this genome as one of the most BGC abundant among fungicolous species. Comparative analyses were performed for genomes of species of the family Hypocreaceae. Some BGCs identified in C. mycophilum genome exhibited similarities to clusters found in the family Hypocreaceae, suggesting vertical heritage. In contrast, certain BGCs showed a scattered distribution among Hypocreaceae species or were solely found in Cladobotryum genomes. This work provides evidence of extensive BGC losses, horizontal gene transfer events, and formation of novel BGCs during evolution, potentially driven by neutral or even positive selection pressures. These events may increase Cladobotryum fitness under various environmental conditions and potentially during host-fungus interaction.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| |
Collapse
|
4
|
Liu Z, Cong Y, Sossah FL, Lu Y, Kang J, Li Y. Characterization and Genome Analysis of Cladobotryum mycophilum, the Causal Agent of Cobweb Disease of Morchella sextelata in China. J Fungi (Basel) 2023; 9:jof9040411. [PMID: 37108865 PMCID: PMC10145569 DOI: 10.3390/jof9040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Cobweb disease is a fungal disease that can cause serious damage to edible mushrooms worldwide. To investigate cobweb disease in Morchella sextelata in Guizhou Province, China, we isolated and purified the pathogen responsible for the disease. Through morphological and molecular identification and pathogenicity testing on infected M. sextelata, we identified Cladobotryum mycophilum as the cause of cobweb disease in this region. This is the first known occurrence of this pathogen causing cobweb disease in M. sextelata anywhere in the world. We then obtained the genome of C. mycophilum BJWN07 using the HiFi sequencing platform, resulting in a high-quality genome assembly with a size of 38.56 Mb, 10 contigs, and a GC content of 47.84%. We annotated 8428 protein-coding genes in the genome, including many secreted proteins, host interaction-related genes, and carbohydrate-active enzymes (CAZymes) related to the pathogenesis of the disease. Our findings shed new light on the pathogenesis of C. mycophilum and provide a theoretical basis for developing potential prevention and control strategies for cobweb disease.
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang 550025, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang 550025, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi P.O. Box 245, Ghana
| | - Yongzhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Jichuan Kang
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang 550025, China
- Correspondence: (J.K.); (Y.L.)
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.K.); (Y.L.)
| |
Collapse
|
5
|
Liu Q, Dong C. Dual Transcriptomics Reveals Interspecific Interactions between the Mycoparasite Calcarisporium cordycipiticola and Its Host Cordyceps militaris. Microbiol Spectr 2023; 11:e0480022. [PMID: 36946736 PMCID: PMC10100745 DOI: 10.1128/spectrum.04800-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Calcarisporium cordycipiticola is a mycoparasite of the edible fungus Cordyceps militaris, and mycoparasitism causes devastating diseases of mushrooms. In this study, dual-transcriptomic analysis was performed to reveal interspecific interactions between the mycoparasite C. cordycipiticola and its host C. militaris. At 4 and 8 days postinfection (dpi), 2,959 and 2,077 differentially expressed genes (DEGs) of C. cordycipiticola and 914 and 1,548 DEGs of C. militaris were identified compared with the mycelial stage, respectively, indicating that C. cordycipiticola responded more quickly than C. militaris. Lectins of the pathogen may play a role in the recognition of fungal prey. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that primary metabolism was vigorous for the pathogen to colonize the host and that the pathogen's attack substantially altered C. militaris' primary metabolism. C. cordycipiticola upregulated some carbohydrate-active enzyme (CAZyme) genes, including CBM18, GH18, GH16, and GH76, for degrading the host cell wall and defending against host immunity. C. militaris produced excessive reactive oxygen species (ROS) to respond to the infection. The GO term "heme binding" was the only shared term enriched at both stages at 4 and 8 dpi, indicating that iron was important for both the pathogen and the host. The uptake of iron by pathogens through multiple pathways promoted colonization and removed high ROS levels produced by the host. The transcription levels of Cmhsp78, Cmhsp70, and Cmhyd1 in C. militaris responded quickly, and these genes have potential as candidates for the breeding of resistant varieties. This study provides clues for understanding the interactions between a mycoparasite and its mushroom host and will be helpful for the breeding of resistant varieties and disease prevention and control for this edible fungus. IMPORTANCE White mildew disease caused by Calcarisporium cordycipiticola is devastating for the fruiting body cultivation of Cordyceps militaris, a popular and highly valued edible fungus. Here, the pathogenic mechanisms of C. cordycipiticola, the responses of C. militaris to the infection, and the interaction of these two phylogenetically close species were revealed by time course dual-transcriptome profiles. In general, the host C. militaris responds more slowly than the pathogen C. cordycipiticola. For the first time, we found that iron was important for both the mycoparasite and the host. C. cordycipiticola takes up iron by multiple pathways to promote colonization and remove high ROS levels produced by the host. The rapidly responding genes Cmhsp70, Cmhsp78, and Cmhyd1 in C. militaris may have the potential as candidate genes for the breeding of resistant varieties. This study expands our understanding of the mycoparasitic interactions of two species from sister families and will be helpful for the breeding of and disease prevention and control in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang H, Yang MF, Zhang Q, Yan B, Jiang YL. Screening for broad-spectrum antimicrobial endophytes from Rosa roxburghii and multi-omic analyses of biosynthetic capacity. FRONTIERS IN PLANT SCIENCE 2022; 13:1060478. [PMID: 36466255 PMCID: PMC9709285 DOI: 10.3389/fpls.2022.1060478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Plants with certain medicinal values are a good source for isolating function-specific endophytes. Rosa roxburghii Tratt. has been reported to be a botanical source of antimicrobial compounds, which may represent a promising candidate for screening endophytic fungi with antimicrobial potential. In this study, 54 endophytes were isolated and molecularly identified from R. roxburghii. The preliminary screening using the plate confrontation method resulted in 15 different endophytic strains showing at least one strong inhibition or three or more moderate inhibition against the 12 tested strains. Further re-screening experiments based on the disc diffusion method demonstrated that Epicoccum latusicollum HGUP191049 and Setophoma terrestris HGUP190028 had excellent antagonistic activity. The minimum inhibitory concentration (MIC) test for extracellular metabolites finally indicated that HGUP191049 had lower MIC values and a broader antimicrobial spectrum, compared to HGUP190028. Genomic, non-target metabolomic, and comparative genomic studies were performed to understand the biosynthetic capacity of the screened-out endophytic fungus. Genome sequencing and annotation of HGUP191049 revealed a size of 33.24 megabase pairs (Mbp), with 24 biosynthetic gene clusters (BGCs), where the putative antimicrobial compounds, oxyjavanicin, patulin and squalestatin S1 were encoded by three different BGCs, respectively. In addition, the non-targeted metabolic results demonstrated that the strain contained approximately 120 antimicrobial secondary metabolites and was structurally diverse. Finally, comparative genomics revealed differences in pathogenicity, virulence, and carbohydrate-active enzymes in the genome of Epicoccum spp. Moreover, the results of the comparative analyses presumed that Epicoccum is a promising source of antimicrobial terpenes, while oxyjavanicin and squalestatin S1 are antimicrobial compounds shared by the genus. In conclusion, R. roxburghii and the endophytic HGUP191049 isolated from it are promising sources of broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Mao-Fa Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Qian Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Bin Yan
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Yu-Lan Jiang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Clarke J, Grogan H, Fitzpatrick D, Kavanagh K. Analysis of the effect of Bacillus velezensis culture filtrate on the growth and proteome of Cladobotryum mycophilum. Fungal Biol 2021; 126:11-19. [PMID: 34930555 DOI: 10.1016/j.funbio.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 11/04/2022]
Abstract
Cladobotryum mycophilum, the causative agent of cobweb disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Cobweb disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant Cladobotryum strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of C. mycophilum to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. Exposure of 48 hr C. mycophilum cultures to 25% v/v 96 hr B. velezensis culture filtrate resulted in a 57% reduction in biomass (P < 0.0002), a disruption in hyphal structure and morphology, and the appearance of aurofusarin, a secondary metabolite which is a known indicator of oxidative stress, in culture medium. Proteomic analysis of B. velezensis culture filtrate revealed the presence of peptidase 8 (subtilisin), peptide deformylase and probable cytosol aminopeptidase which are known to induce catalytic activity. Characterisation of the proteomic response of C. mycophilum following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (ISWI chromatin-remodelling complex ATPase ISW2 (+24 fold), carboxypeptidase Y precursor (+3 fold) and calmodulin (+2 fold). There was also a decrease in the abundance of proteins associated with transcription (40 S ribosomal protein S30 (-26 fold), 40 S ribosomal protein S21 (-3 fold) and carbohydrate metabolism (l-xylulose reductase (-10 fold). The results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of C. mycophilum and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Collapse
Affiliation(s)
- Joy Clarke
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - Helen Grogan
- Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - David Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
8
|
Liu Q, Xu Y, Zhang X, Li K, Li X, Wang F, Xu F, Dong C. Infection Process and Genome Assembly Provide Insights into the Pathogenic Mechanism of Destructive Mycoparasite Calcarisporium cordycipiticola with Host Specificity. J Fungi (Basel) 2021; 7:918. [PMID: 34829206 PMCID: PMC8620734 DOI: 10.3390/jof7110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Calcarisporium cordycipiticola is the pathogen in the white mildew disease of Cordyceps militaris, one of the popular mushrooms. This disease frequently occurs and there is no effective method for disease prevention and control. In the present study, C. militaris is found to be the only host of C. cordycipiticola, indicating strict host specificity. The infection process was monitored by fluorescent labeling and scanning and transmission electron microscopes. C. cordycipiticola can invade into the gaps among hyphae of the fruiting bodies of the host and fill them gradually. It can degrade the hyphae of the host by both direct contact and noncontact. The parasitism is initially biotrophic, and then necrotrophic as mycoparasitic interaction progresses. The approximate chromosome-level genome assembly of C. cordycipiticola yielded an N50 length of 5.45 Mbp and a total size of 34.51 Mbp, encoding 10,443 proteins. Phylogenomic analysis revealed that C. cordycipiticola is phylogenetically close to its specific host, C. militaris. A comparative genomic analysis showed that the number of CAZymes of C. cordycipiticola was much less than in other mycoparasites, which might be attributed to its host specificity. Secondary metabolite cluster analysis disclosed the great biosynthetic capabilities and potential mycotoxin production capability. This study provides insights into the potential pathogenesis and interaction between mycoparasite and its host.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
| | - Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
| | - Fangxu Xu
- Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China;
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.X.); (X.Z.); (K.L.); (X.L.); (F.W.)
| |
Collapse
|
9
|
Terán LC, Mortera P, Tubio G, Alarcón SH, Blancato VS, Espariz M, Esteban L, Magni C. Genomic analysis revealed conserved acid tolerance mechanisms from native micro-organisms in fermented feed. J Appl Microbiol 2021; 132:1152-1165. [PMID: 34487594 DOI: 10.1111/jam.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
AIMS Fermented feed is an agricultural practice used in many regions of the world to improve the growth performance of farm animals. This study aimed to identify and evaluate the lactic acid bacteria and yeast involved in the production of fermented feed. METHODS AND RESULTS We isolated and described two micro-organisms from autochthonous microbiota origin present in a regional feed product, Lactobacillus paracasei IBR07 (Lacticaseibacillus paracasei) and Kazachstania unispora IBR014 (Saccharomyces unisporum). Genome sequence analyses were performed to characterize both micro-organisms. Potential pathways involved in the acid response, tolerance and persistence were predicted in both genomes. Although L. paracasei and K. unispora are considered safe for animal feed, we analysed the presence of virulence factors, antibiotic resistance and pathogenicity islands. Furthermore, the Galleria mellonella model was used to support the safety of both isolates. CONCLUSIONS We conclude that IBR07 and IBR014 strains are good candidates to be used as starter cultures for feed fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY The data presented here will be helpful to explore other biotechnological aspects and constitute a starting point for further studies to establish the consumption benefit of fermented feed in farm animal production.
Collapse
Affiliation(s)
- Lucrecia C Terán
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Centro de Referencia para Lactobacilos, CERELA-CONICET, San Miguel de Tucuman, Tucumán, Argentina
| | - Pablo Mortera
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Gisela Tubio
- Instituto de Procesos Biotecnológicos y Químicos Rosario, IPROByQ (CONICET-UNR), Rosario, Argentina
| | - Sergio H Alarcón
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Instituto de Química de Rosario, IQUIR (CONICET-UNR), Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, FBioyF-UNR, Rosario, Argentina
| | - Luis Esteban
- Química Biológica, Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| |
Collapse
|
10
|
Complete Genomic Characterization and Identification of Saccharomycopsisphalluae sp. nov., a Novel Pathogen Causes Yellow Rot Disease on Phallus rubrovolvatus. J Fungi (Basel) 2021; 7:jof7090707. [PMID: 34575745 PMCID: PMC8468998 DOI: 10.3390/jof7090707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
“Hongtuozhusun” (Phallus rubrovolvatus) is an important edible and medicinal mushroom endemic to Southwest China. However, yellow rot disease is a severe disease of P. rubrovolvatus that occurs extensively in Guizhou Province. It has caused major economic losses and hinders the development of the P. rubrovolvatus industry. In this study, 28 microorganism strains were isolated from diseased fruiting bodies of P. rubrovolvatus at various stages, two of which were confirmed to be pathogenic based on Koch’s postulates. These two strains are introduced herein as Saccharomycopsisphalluae sp. nov. based on morphological, physiological, and molecular analysis. We reported a high-quality de novo sequencing and assembly of the S. phalluae genome using single-molecule real-time sequencing technology. The whole genome was approximately 14.148 Mb with a G+C content of 43.55%. Genome assembly generated 8 contigs with an N50 length of 1,822,654 bp. The genome comprised 5966 annotated protein-coding genes. This is the first report of mushroom disease caused by Saccharomycopsis species. We expect that the information on genome properties, particularly in pathogenicity-related genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.
Collapse
|
11
|
Tian F, Li C, Li Y. Genomic Analysis of Sarcomyxa edulis Reveals the Basis of Its Medicinal Properties and Evolutionary Relationships. Front Microbiol 2021; 12:652324. [PMID: 34276589 PMCID: PMC8281127 DOI: 10.3389/fmicb.2021.652324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Yuanmo [Sarcomyxa edulis (Y.C. Dai, Niemelä & G.F. Qin) T. Saito, Tonouchi & T. Harada] is an important edible and medicinal mushroom endemic to Northeastern China. Here we report the de novo sequencing and assembly of the S. edulis genome using single-molecule real-time sequencing technology. The whole genome was approximately 35.65 Mb, with a G + C content of 48.31%. Genome assembly generated 41 contigs with an N50 length of 1,772,559 bp. The genome comprised 9,364 annotated protein-coding genes, many of which encoded enzymes involved in the modification, biosynthesis, and degradation of glycoconjugates and carbohydrates or enzymes predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I polyketide, siderophore, and fatty acids, which are responsible for the pharmacodynamic activities of S. edulis. We also identified genes encoding 1,3-β-glucan synthase and endo-1,3(4)-β-glucanase, which are involved in polysaccharide and uridine diphosphate glucose biosynthesis. Phylogenetic and comparative analyses of Basidiomycota fungi based on a single-copy orthologous protein indicated that the Sarcomyxa genus is an independent group that evolved from the Pleurotaceae family. The annotated whole-genome sequence of S. edulis can serve as a reference for investigations of bioactive compounds with medicinal value and the development and commercial production of superior S. edulis varieties.
Collapse
Affiliation(s)
- Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
Kumar A, Sharma VP, Kumar S, Nath M. De novo genome sequencing of mycoparasite Mycogone perniciosa strain MgR1 sheds new light on its biological complexity. Braz J Microbiol 2021; 52:1545-1556. [PMID: 34138459 DOI: 10.1007/s42770-021-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Mycogone perniciosa is a mycoparasite causing Wet Bubble Diseases (WBD) of Agaricus bisporus. In the present study, the whole genome of M. perniciosa strain MgR1 was sequenced using Illumina NextSeq500 platform. This sequencing generated 8.03 Gb of high-quality data and a draft genome of 39 Mb was obtained through a de novo assembly of the high-quality reads. The draft genome resulted into prediction of 9276 genes from the 1597 scaffolds. NCBI-based homology analysis revealed the identification of 8660 genes. Notably, non-redundant protein database analysis of the M. perniciosa strain MgR1 revealed its close relation with the Trichoderma arundinaceum. Moreover, ITS-based phylogenetic analysis showed the highest similarity of M. perniciosa strain MgR1 with Hypomyces perniciosus strain CBS 322.22 and Mycogone perniciosa strain PPRI 5784. Annotation of the 3917 genes of M. perniciosa strain MgR1 grouped in three major categories viz. biological process (2583 genes), cellular component (2013 genes), and molecular function (2919 genes). UniGene analysis identified 2967 unique genes in M. perniciosa strain MgR1. In addition, prediction of the secretory and pathogenicity-related genes based on the fungal database indicates that 1512 genes (16% of predicted genes) encode for secretory proteins. Moreover, out of 9276 genes, 1296 genes were identified as pathogenesis-related proteins matching with 51 fungal and bacterial genera. Overall, the key pathogenic genes such as lysine M protein domain genes, G protein, hydrophobins, and cytochrome P450 were also observed. The draft genome of MgR1 provides an understanding of pathogenesis of WBD in A. bisporus and could be utilized to develop novel management strategies.
Collapse
Affiliation(s)
- Anil Kumar
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India.
| | - V P Sharma
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India
| | - Satish Kumar
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India
| | - Manoj Nath
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India
| |
Collapse
|
13
|
Gea FJ, Navarro MJ, Santos M, Diánez F, Carrasco J. Control of Fungal Diseases in Mushroom Crops while Dealing with Fungicide Resistance: A Review. Microorganisms 2021; 9:585. [PMID: 33809140 PMCID: PMC8000694 DOI: 10.3390/microorganisms9030585] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoparasites cause heavy losses in commercial mushroom farms worldwide. The negative impact of fungal diseases such as dry bubble (Lecanicillium fungicola), cobweb (Cladobotryum spp.), wet bubble (Mycogone perniciosa), and green mold (Trichoderma spp.) constrains yield and harvest quality while reducing the cropping surface or damaging basidiomes. Currently, in order to fight fungal diseases, preventive measurements consist of applying intensive cleaning during cropping and by the end of the crop cycle, together with the application of selective active substances with proved fungicidal action. Notwithstanding the foregoing, the redundant application of the same fungicides has been conducted to the occurrence of resistant strains, hence, reviewing reported evidence of resistance occurrence and introducing unconventional treatments is worthy to pave the way towards the design of integrated disease management (IDM) programs. This work reviews aspects concerning chemical control, reduced sensitivity to fungicides, and additional control methods, including genomic resources for data mining, to cope with mycoparasites in the mushroom industry.
Collapse
Affiliation(s)
- Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón, Quintanar del Rey, 16220 Cuenca, Spain; (F.J.G.); (M.J.N.)
| | - María J. Navarro
- Centro de Investigación, Experimentación y Servicios del Champiñón, Quintanar del Rey, 16220 Cuenca, Spain; (F.J.G.); (M.J.N.)
| | - Milagrosa Santos
- Departamento de Agronomía, Escuela Politécnica Superior, Universidad de Almería, 04120 Almería, Spain; (M.S.); (F.D.)
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Politécnica Superior, Universidad de Almería, 04120 Almería, Spain; (M.S.); (F.D.)
| | - Jaime Carrasco
- Technological Research Center of the Champiñón de La Rioja (CTICH), 26560 Autol, Spain
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 2JD, UK
| |
Collapse
|
14
|
Wang X, Peng J, Sun L, Bonito G, Guo Y, Li Y, Fu Y. Genome Sequencing of Paecilomyces Penicillatus Provides Insights into Its Phylogenetic Placement and Mycoparasitism Mechanisms on Morel Mushrooms. Pathogens 2020; 9:pathogens9100834. [PMID: 33065983 PMCID: PMC7650745 DOI: 10.3390/pathogens9100834] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Morels (Morchella spp.) are popular edible fungi with significant economic and scientific value. However, white mold disease, caused by Paecilomyces penicillatus, can reduce morel yield by up to 80% in the main cultivation area in China. Paecilomyces is a polyphyletic genus and the exact phylogenetic placement of P. penicillatus is currently still unclear. Here, we obtained the first high-quality genome sequence of P. penicillatus generated through the single-molecule real-time (SMRT) sequencing platform. The assembled draft genome of P. penicillatus was 40.2 Mb, had an N50 value of 2.6 Mb and encoded 9454 genes. Phylogenetic analysis of single-copy orthologous genes revealed that P. penicillatus is in Hypocreales and closely related to Hypocreaceae, which includes several genera exhibiting a mycoparasitic lifestyle. CAZymes analysis demonstrated that P. penicillatus encodes a large number of fungal cell wall degradation enzymes. We identified many gene clusters involved in the production of secondary metabolites known to exhibit antifungal, antibacterial, or insecticidal activities. We further demonstrated through dual culture assays that P. penicillatus secretes certain soluble compounds that are inhibitory to the mycelial growth of Morchella sextelata. This study provides insights into the correct phylogenetic placement of P. penicillatus and the molecular mechanisms that underlie P. penicillatus pathogenesis.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (L.S.); (Y.L.)
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48842, USA; (J.P.); (G.B.)
| | - Jingyu Peng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48842, USA; (J.P.); (G.B.)
| | - Lei Sun
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (L.S.); (Y.L.)
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48842, USA; (J.P.); (G.B.)
| | - Yuxiu Guo
- Life Science College, Northeast Normal University, Changchun 130118, China;
| | - Yu Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (L.S.); (Y.L.)
| | - Yongping Fu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (L.S.); (Y.L.)
- Correspondence:
| |
Collapse
|