1
|
Harrell JE, Roy CJ, Gunn JS, McLachlan JB. Current vaccine strategies and novel approaches to combatting Francisella infection. Vaccine 2024; 42:2171-2180. [PMID: 38461051 DOI: 10.1016/j.vaccine.2024.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Shoudy LE, Namjoshi P, Giordano G, Kumar S, Bowling JD, Gelhaus C, Barry EM, Hazlett AJ, Hazlett BA, Cooper KL, Pittman PR, Reed DS, Hazlett KRO. The O-Ag Antibody Response to Francisella Is Distinct in Rodents and Higher Animals and Can Serve as a Correlate of Protection. Pathogens 2021; 10:1646. [PMID: 34959601 PMCID: PMC8704338 DOI: 10.3390/pathogens10121646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Identifying correlates of protection (COPs) for vaccines against lethal human (Hu) pathogens, such as Francisella tularensis (Ft), is problematic, as clinical trials are currently untenable and the relevance of various animal models can be controversial. Previously, Hu trials with the live vaccine strain (LVS) demonstrated ~80% vaccine efficacy against low dose (~50 CFU) challenge; however, protection deteriorated with higher challenge doses (~2000 CFU of SchuS4) and no COPs were established. Here, we describe our efforts to develop clinically relevant, humoral COPs applicable to high-dose, aerosol challenge with S4. First, our serosurvey of LVS-vaccinated Hu and animals revealed that rabbits (Rbs), but not rodents, recapitulate the Hu O-Ag dependent Ab response to Ft. Next, we assayed Rbs immunized with distinct S4-based vaccine candidates (S4ΔclpB, S4ΔguaBA, and S4ΔaroD) and found that, across multiple vaccines, the %O-Ag dep Ab trended with vaccine efficacy. Among S4ΔguaBA-vaccinated Rbs, the %O-Ag dep Ab in pre-challenge plasma was significantly higher in survivors than in non-survivors; a cut-off of >70% O-Ag dep Ab predicted survival with high sensitivity and specificity. Finally, we found this COP in 80% of LVS-vaccinated Hu plasma samples as expected for a vaccine with 80% Hu efficacy. Collectively, the %O-Ag dep Ab response is a bona fide COP for S4ΔguaBA-vaccinated Rb and holds significant promise for guiding vaccine trials with higher animals.
Collapse
Affiliation(s)
- Lauren E. Shoudy
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (L.E.S.); (G.G.)
| | - Prachi Namjoshi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (P.N.); (S.K.)
| | - Gabriela Giordano
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (L.E.S.); (G.G.)
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (P.N.); (S.K.)
| | - Jennifer D. Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.D.B.); (D.S.R.)
| | | | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Allan J. Hazlett
- Department of Philosophy, Washington University, St Louis, MO 63130, USA;
| | - Brian A. Hazlett
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kristine L. Cooper
- Hillman Cancer Center, Biostatistics Facility, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Phillip R. Pittman
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Fredrick, MD 21702, USA;
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.D.B.); (D.S.R.)
| | - Karsten R. O. Hazlett
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (L.E.S.); (G.G.)
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (P.N.); (S.K.)
| |
Collapse
|
3
|
Kubelkova K, Macela A. Francisella and Antibodies. Microorganisms 2021; 9:microorganisms9102136. [PMID: 34683457 PMCID: PMC8538966 DOI: 10.3390/microorganisms9102136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023] Open
Abstract
Immune responses to intracellular pathogens depend largely upon the activation of T helper type 1-dependent mechanisms. The contribution of B cells to establishing protective immunity has long been underestimated. Francisella tularensis, including a number of subspecies, provides a suitable model for the study of immune responses against intracellular bacterial pathogens. We previously demonstrated that Francisella infects B cells and activates B-cell subtypes to produce a number of cytokines and express the activation markers. Recently, we documented the early production of natural antibodies as a consequence of Francisella infection in mice. Here, we summarize current knowledge on the innate and acquired humoral immune responses initiated by Francisella infection and their relationships with the immune defense systems.
Collapse
|
4
|
Tummillo KM, Hazlett KR. Co-Opting Host Receptors for Targeted Delivery of Bioconjugates-From Drugs to Bugs. Molecules 2021; 26:molecules26051479. [PMID: 33803208 PMCID: PMC7963163 DOI: 10.3390/molecules26051479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Bioconjugation has allowed scientists to combine multiple functional elements into one biological or biochemical unit. This assembly can result in the production of constructs that are targeted to a specific site or cell type in order to enhance the response to, or activity of, the conjugated moiety. In the case of cancer treatments, selectively targeting chemotherapies to the cells of interest limit harmful side effects and enhance efficacy. Targeting through conjugation is also advantageous in delivering treatments to difficult-to-reach tissues, such as the brain or infections deep in the lung. Bacterial infections can be more selectively treated by conjugating antibiotics to microbe-specific entities; helping to avoid antibiotic resistance across commensal bacterial species. In the case of vaccine development, conjugation is used to enhance efficacy without compromising safety. In this work, we will review the previously mentioned areas in which bioconjugation has created new possibilities and advanced treatments.
Collapse
Affiliation(s)
- Kristen M. Tummillo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA;
- Admera Health, South Plainfield, NJ 07080, USA
| | - Karsten R.O. Hazlett
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA;
- Correspondence: ; Tel.: +1-518-262-2338
| |
Collapse
|