1
|
Fotakis EA, Papamichail D, Boutsini S, Patsoula E, Panagiotopoulos T. Leishmaniasis in Greece: Prospects of transitioning to a One Health surveillance system. One Health 2024; 19:100896. [PMID: 39350935 PMCID: PMC11440306 DOI: 10.1016/j.onehlt.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Leishmaniasis is a high burden neglected disease in the Mediterranean ecoregion, lacking surveillance attention. We aimed to provide an overview of the state of leishmaniasis surveillance in Greece, investigating the prospect of transitioning to a One Health surveillance system. We conducted a narrative review describing human and animal leishmaniasis data from Greece, including entomological findings. Through a separate review process, we describe the current leishmaniasis surveillance system pertaining to humans, animals, vectors and the environment. Additionally, we distributed likert-scale questionnaires to key informants, capturing expert-view on the necessity, existing levels and barriers of OH leishmaniasis surveillance in Greece. We identified key system strengths, weaknesses, opportunities and threats respective to a OH transition through SWOT analysis. Greece is endemic for zoonotic visceral leishmaniasis (VL) and canine leishmaniasis (CanL), displaying an increasing VL trend in recent years and high national Leishmania seroprevalence rates in dogs (range: 13.8-23.4 %). Mandatory leishmaniasis notification in humans and animals, human case-based investigations, and active case finding activities in stray dogs, comprise valuable system components of high OH operational relevance. Conversely, the existing CanL surveillance governance and the lack of systematic entomological surveillance constitute important drawbacks. Moreover, the current context of public health and animal health financial constraints in Greece may impede a strategic OH transition in leishmaniasis surveillance. On the contrary, Greece's OH experience in West Nile Virus surveillance in conjunction with leishmaniasis-expert consensus on the necessity of OH surveillance and key barriers to its realization, compose important transition opportunities. Despite shortfalls in human, animal and vector surveillance, existing system characteristics, structures and practices comprise a promising basis for developing OH cross-sectoral leishmaniasis surveillance activities in Greece.
Collapse
Affiliation(s)
- Emmanouil Alexandros Fotakis
- Department of Public Health Policies, School of Public Health, University of West Attica, Athens, Greece
- MSc Course in Public Health (Specialty: Public Health Science and Policy), Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - Dimitris Papamichail
- Department of Public Health Policies, School of Public Health, University of West Attica, Athens, Greece
| | - Sofia Boutsini
- Department of Parasitology-Parasitic Diseases, Entomology and Bee Health Directorate of Athens Veterinary Centre, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni Patsoula
- Department of Public Health Policies, School of Public Health, University of West Attica, Athens, Greece
| | - Takis Panagiotopoulos
- Department of Public Health Policies, School of Public Health, University of West Attica, Athens, Greece
| |
Collapse
|
2
|
Omondi ZN, Caner A, Arserim SK. Trypanosomes and gut microbiota interactions in triatomine bugs and tsetse flies: A vectorial perspective. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:253-268. [PMID: 38651684 DOI: 10.1111/mve.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ayşe Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
3
|
Tabbabi A, Mizushima D, Yamamoto DS, Zhioua E, Kato H. Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLoS Negl Trop Dis 2024; 18:e0012458. [PMID: 39236074 PMCID: PMC11407667 DOI: 10.1371/journal.pntd.0012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Phlebotomine sand flies are vectors of the protozoan parasite Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the impact of host species and environment on the gut microbiome. To address this issue, a comparative analysis of the microbiota of sand fly vector populations of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in Tunisia was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize and compare the overall bacterial and fungal composition of field-collected sand flies: Phlebotomus papatasi, Ph. perniciosus, Ph. riouxi, and Ph. sergenti. Thirty-eight bacterial genera belonging to five phyla were identified in 117 female specimens. The similarities and differences between the microbiome data from different samples collected from three collections were determined using principal coordinate analysis (PCoA). Substantial variations in the bacterial composition were found between geographically distinct populations of the same sand fly species, but not between different species at the same location, suggesting that the microbiota content was structured according to environmental factors rather than host species. These findings suggest that host phylogeny may play a minor role in determining the insect gut microbiota, and its potential to affect the transmission of the Leishmania parasite appear to be very low. These results highlight the need for further studies to decode sand fly Leishmania-microbiota interactions, as even the same bacterial species, such as Enterococcus faecalis, can exert completely opposite effects when confronted with different pathogens within various host insects and vice versa.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Vaselek S, Sarac BE, Uzunkaya AD, Yilmaz A, Karaaslan C, Alten B. Identification of Ochrobactrum as a bacteria with transstadial transmission and potential for application in paratransgenic control of leishmaniasis. Parasitol Res 2024; 123:82. [PMID: 38175278 DOI: 10.1007/s00436-023-08087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Leishmaniasis is a zoonotic vector-borne disease with worldwide distribution. All current approaches in leishmaniasis control or development of vaccines/cures showed only limited success. Recently, paratransgenesis has been marked as a promising strategy for leishmaniasis control. Thus, the investigations of the gut microbial content of sand flies have gained popularity. Gut microbial composition of the laboratory colony of Phlebotomus papatasi was investigated via microbial culturomics approach which refers to the combination of multiple culture conditions and different selective and/or enriched culture mediums, followed by 16S rDNA sequencing. Investigations were conducted on three offspring generations, with six samplings of immature stages (four larval samplings, one pre-pupa, one pupa) and samplings of adults before and after blood feeding. The aim was to determine if microbiome changes during the sand fly development and to identify bacteria with transstadial potential. The presence of 8 bacterial taxa (Bacillus sp., Terribacillus sp., Staphylococcus sp., Alcaligenes sp., Microbacterium sp., Leucobacter sp., Ochrobactrum sp. and Enterobacter sp.), 2 fungi (Fusarium sp. and Acremonium sp.) and 1 yeast (Candida sp.) were recorded. Gram-positive bacteria were more diverse, but gram-negative bacteria were more abundant. All taxa were recorded among immature stage samples, while only one bacterium was detected in adults. Microbial diversity among larval samples was stable, with a steady decrease in pre-pupa and pupa, resulting in the survival of only Ochrobactrum sp. in adults. Abundance of microbes was higher when larvae were actively feeding, with a gradual decrease after larvae stopped feeding and commenced pupation. Ochrobactrum sp. is the bacteria with transstadial potential, worthy of future in-depth analysis for the application in paratransgenic approach for the control of Leishmania sp.
Collapse
Affiliation(s)
- Slavica Vaselek
- Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Türkiye.
| | - Basak Ezgi Sarac
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Türkiye
| | - Ali Doruk Uzunkaya
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Türkiye
| | - Ayda Yilmaz
- Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Türkiye
| | - Cagatay Karaaslan
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Türkiye
| | - Bulent Alten
- Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Türkiye
| |
Collapse
|
5
|
Tabbabi A, Mizushima D, Yamamoto DS, Kato H. Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies. Parasit Vectors 2023; 16:310. [PMID: 37653518 PMCID: PMC10472604 DOI: 10.1186/s13071-023-05939-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Blood-sucking phlebotomine sand flies are vectors of the protozoan parasites Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the factors that modify the gut microbiota composition of sand flies. As a key step toward addressing this issue, we investigated the impact of host species on the gut bacterial composition in Phlebotomus and Lutzomyia sand flies reared under the same conditions. METHODS Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize the overall bacterial composition of three laboratory-reared sandflies: Phlebotomus papatasi, Ph. duboscqi, and Lutzomyia longipalpis. RESULTS Our results showed that the larvae of the three sand fly species harbored almost the same microbes but had different relative abundances. Adult Ph. papatasi and Ph. duboscqi revealed similar microbiome compositions, which were distinct from that of adult Lu. longipalpis. Furthermore, we showed that Ph. papatasi and Ph. duboscqi are hosts for different bacterial genera. The experiment was repeated twice to improve accuracy and increase reliability of the data, and the same results were obtained even when a distinct composition of the microbiome among the same species was identified probably because of the use of different larvae food batch. CONCLUSIONS The present study provides key insights into the role of host species in the gut microbial content of different sand fly species reared under the same conditions, which may influence their susceptibility to Leishmania infection.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
6
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
7
|
Lozano-Sardaneta YN, Viveros-Santos V, Colunga-Salas P, Rodríguez-Rojas JJ, Becker I. Is Psathyromyia shannoni (Diptera: Psychodidae: Phlebotominae) a species complex? Retrospective study of genetic diversity of COI gene, pathogens and geographic distribution. Acta Trop 2023; 238:106807. [PMID: 36577477 DOI: 10.1016/j.actatropica.2022.106807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/26/2022]
Abstract
The sand fly Psathyromyia shannoni is a broadly distributed species that is relevant for the transmission of pathogens such as Leishmania, Bartonella and viruses in several countries of America. This species belongs to the Shannoni complex. Yet its identification is difficult due to morphologic intraspecific polymorphisms that make it difficult to distinguish between species, and could therefore lead to misidentification and overestimation of its distribution. The aim of this study was to perform a retrospective study on the genetic diversity of Pa. shannoni based on the Cytochrome Oxidase subunit 1 gene and considering its geographic distribution to achieve a better identification and differentiation from other species of the Shannoni complex. According to the Maximum Likelihood analysis and the data on the genetic structure, we propose a modified delimitation of Pa. shannoni species by classifying it into at least three genetic lineages, based on genetic variability and distribution. However, more genetic information on the COI gene, mainly from countries where this species has been reported, is needed to strengthen this proposal.
Collapse
Affiliation(s)
- Yokomi N Lozano-Sardaneta
- Centro de Medicina Tropical, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, México; Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 06720, México.
| | - Vicente Viveros-Santos
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, México; Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Campus para la Cultura, las Artes y el Deporte, Cultura Veracruzana No. 101, Emiliano Zapata, Xalapa-Enríquez, Veracruz 91090, México
| | - Jorge J Rodríguez-Rojas
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Patógenos y Vectores. Dr. Carlos Canseco s/n esquina Dr. J. E. González, Mitras Centro, C.P., Monterrey, Nuevo León 64460, México
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, México.
| |
Collapse
|
8
|
Crippen TL, Singh B, Anderson RC, Sheffield CL. Management Practices Affecting Lesser Mealworm Larvae (Alphitobius diaperinus) Associated Microbial Community in a Broiler House and After Relocating With the Litter Into Pastureland. Front Microbiol 2022; 13:875930. [PMID: 35847098 PMCID: PMC9283091 DOI: 10.3389/fmicb.2022.875930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Lesser mealworms are often found infesting production houses used to raise broiler chickens. Previous studies have investigated pathogenic microorganisms associated with the larvae, but a more thorough study relating total microbiome changes due to management procedures and flock rotations was needed. Additionally, there is a question of what microbiota are transferred into the environment when the litter, in which larvae reside, is piled in pastureland for use as fertilizer and where interactions with the soil and other fauna can occur. This study chronicled, by the 16S rRNA sequencing, the bacterial community profile of larvae in a broiler grow-out house synchronizing to when birds were added to and removed from the house over 2.5 years. The profile was found to be relatively constant despite 11 flock rotations and management disruptions, specifically litter cleanout procedures and the addition of new birds or bedding. In contrast, once removed from the controlled broiler house environment and placed into open pastureland, the substantial microbial diversity brought with the larvae showed greater fluctuation in structure with environmental conditions, one of which was rainfall. Surprisingly, these larvae survived at least 19 weeks, so the potential for moving larval-associated microbes into the environment needs further assessment to minimize the risk of relocating foodborne pathogens and also to assess those bacteria-generating metabolites that have benefits to plant growth when using the litter as a fertilizer. The characterization of their microbiome is the first step to investigating the influences of their microbes on the manmade and environmental ecosystems.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
- *Correspondence: Tawni L. Crippen,
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Cynthia L. Sheffield
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| |
Collapse
|
9
|
Nerb B, Dudziak D, Gessner A, Feuerer M, Ritter U. Have We Ignored Vector-Associated Microbiota While Characterizing the Function of Langerhans Cells in Experimental Cutaneous Leishmaniasis? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.874081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
11
|
Lozano-Sardaneta YN, Jacobo-Olvera E, Ruiz-Tovar K, Sánchez-Montes S, Rodríguez-Rojas JJ, Fernández-Figueroa EA, Roldán-Fernández SG, Rodriguez-Martinez LM, Dzul-Manzanilla F, Correa-Morales F, Treviño-Garza N, Díaz-Albíter HM, Zwetsch A, Valadas SYOB, Nilce-Silveira A, Becker I, Huerta H. Detection of Wolbachia and Leishmania DNA in sand flies (Diptera: Psychodidae, Phlebotominae) from a focus of cutaneous leishmaniasis in Tabasco, Mexico. Parasitol Res 2022; 121:513-520. [PMID: 35067743 DOI: 10.1007/s00436-021-07412-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
Phlebotomine sand flies are the main vectors of Leishmania genus species worldwide; therefore, the detection of some reproductive parasites, such as Wolbachia, has been considered a possible strategy for biological control. In Mexico, leishmaniasis cases have been recorded in 25 states, yet only two sand fly species have been related to Wolbachia spp. Although the state of Tabasco has a high number of leishmaniasis cases, only few studies have been done on sand fly species. The aim of this study was to analyze the diversity of sand fly species and to detect Wolbachia spp. and/or Leishmania spp. in the captured specimens. Sand flies were collected at the locality of Huimango, Tabasco, Mexico, during October 2019, using nine light traps (CDC) and two Shannon traps per night. The specimens were identified and females were analyzed by PCR for the DNA detection for pathogens. A total of 193 sand fly specimens belonging to five species were morphologically identified. Pintomyia ovallesi was the most abundant species (76.84%), followed by Micropygomyia cayennensis (6.40%). Furthermore, first records of four sand fly species were established for the state of Tabasco, thereby increasing the species richness in the state from four to eight. We observed a natural infection rate of 9.7% (10/103) for Leishmania and 0.91% (1/103) for Wolbachia. The importance of conducting entomological surveys in endemic areas of leishmaniasis in Mexico is highlighted, to determine whether other sand fly species may be potential vectors of Leishmania spp., and if some Wolbachia strains could be relevant for the control of leishmaniasis.
Collapse
Affiliation(s)
- Yokomi N Lozano-Sardaneta
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
| | - Erika Jacobo-Olvera
- Laboratorio de Entomología, Instituto de Diagnóstico Y Referencia Epidemiológicos 'Dr, Manuel Martínez Báez', Francisco de P. Miranda No. 177, Unidad Lomas de Plateros, 01480, Ciudad de México, México
| | - Karina Ruiz-Tovar
- Laboratorio de Entomología, Instituto de Diagnóstico Y Referencia Epidemiológicos 'Dr, Manuel Martínez Báez', Francisco de P. Miranda No. 177, Unidad Lomas de Plateros, 01480, Ciudad de México, México
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
- Facultad de Ciencias Biológicas Y Agropecuarias, Región Tuxpan, Universidad Veracruzana, Carretera Tuxpan Tampico Kilómetro 7. 5, Universitaria, 92870, Tuxpan de Rodríguez Cano, Veracruz, México
| | - Jorge J Rodríguez-Rojas
- Centro de Investigación Y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Patógenos Y Vectores, Dr. Carlos Canseco S/N Esquina Dr. J. E. González, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, México
| | - Edith A Fernández-Figueroa
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
- Computational and Integrative Genomics, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | - Luis Miguel Rodriguez-Martinez
- Unidad de Investigación Entomológica Y de Bioensayo del Estado de Tabasco, Melchor Ocampo 113, Col Atasta de serra, C.P.86100, Villahermosa, Tabasco, México
| | - Felipe Dzul-Manzanilla
- Programa de Enfermedades Transmitidas Por Vectores, Centro Nacional de Programas Preventivos Y Control de Enfermedades, Benjamín Franklin 132, 11800, Escandón, Mexico City, México
| | - Fabian Correa-Morales
- Programa de Enfermedades Transmitidas Por Vectores, Centro Nacional de Programas Preventivos Y Control de Enfermedades, Benjamín Franklin 132, 11800, Escandón, Mexico City, México
| | - Nancy Treviño-Garza
- Programa de Enfermedades Transmitidas Por Vectores, Centro Nacional de Programas Preventivos Y Control de Enfermedades, Benjamín Franklin 132, 11800, Escandón, Mexico City, México
| | - Héctor Manuel Díaz-Albíter
- El Colegio de La Frontera Sur (ECOSUR), Unidad Villahermosa, Carretera Villahermosa a Reforma Km. 15.5 s/n, Ranchería Guineo 2da. Sección, 86280, Villahermosa, Tabasco, Mexico
| | - Adriana Zwetsch
- Laboratorio de Transmissores de Leishmanioses, Instituto Oswaldo Cruz, Fundaçăo Oswaldo Cruz. Avenue Brasil 4365, Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | | | - Ana Nilce-Silveira
- Asesora Regional Para Leishmaniasis OPS/OMS, Av. Gov. Leonel de Moura Brizola, Duque de Caxias, Rio de Janeiro, 7778, Brazil
| | - Ingeborg Becker
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico Y Referencia Epidemiológicos 'Dr, Manuel Martínez Báez', Francisco de P. Miranda No. 177, Unidad Lomas de Plateros, 01480, Ciudad de México, México.
| |
Collapse
|
12
|
Crippen TL, Singh B, Anderson RC, Sheffield CL. Adult Alphitobius diaperinus Microbial Community during Broiler Production and in Spent Litter after Stockpiling. Microorganisms 2022; 10:microorganisms10010175. [PMID: 35056628 PMCID: PMC8778262 DOI: 10.3390/microorganisms10010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
The facilities used to raise broiler chickens are often infested with litter beetles (lesser mealworm, Alphitobius diaperinus). These beetles have been studied for their carriage of pathogenic microbes; however, a more comprehensive microbiome study on these arthropods is lacking. This study investigated their microbial community in a longitudinal study throughout 2.5 years of poultry production and after the spent litter, containing the mealworms, was piled in pastureland for use as fertilizer. The mean most abundant phyla harbored by the beetles in house were the Proteobacteria (39.8%), then Firmicutes (30.8%), Actinobacteria (21.1%), Tenericutes (5.1%), and Bacteroidetes (1.6%). The community showed a modest decrease in Firmicutes and increase in Proteobacteria over successive flock rotations. The beetles were relocated within the spent litter to pastureland, where they were found at least 19 weeks later. Over time in the pastureland, their microbial profile underwent a large decrease in the percent of Firmicutes (20.5%). The lesser mealworm showed an ability to survive long-term in the open environment within the spent litter, where their microbiome should be further assessed to both reduce the risk of transferring harmful bacteria, as well as to enhance their contribution when the litter is used as a fertilizer.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (R.C.A.); (C.L.S.)
- Correspondence:
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (R.C.A.); (C.L.S.)
| | - Cynthia L. Sheffield
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (R.C.A.); (C.L.S.)
| |
Collapse
|
13
|
Molecular phylogeny of heritable symbionts and microbiota diversity analysis in phlebotominae sand flies and Culex nigripalpus from Colombia. PLoS Negl Trop Dis 2021; 15:e0009942. [PMID: 34928947 PMCID: PMC8722730 DOI: 10.1371/journal.pntd.0009942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/03/2022] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Secondary symbionts of insects include a range of bacteria and fungi that perform various functional roles on their hosts, such as fitness, tolerance to heat stress, susceptibility to insecticides and effects on reproduction. These endosymbionts could have the potential to shape microbial communites and high potential to develop strategies for mosquito-borne disease control. Methodology/Principal findings The relative frequency and molecular phylogeny of Wolbachia, Microsporidia and Cardinium were determined of phlebotomine sand flies and mosquitoes in two regions from Colombia. Illumina Miseq using the 16S rRNA gene as a biomarker was conducted to examine the microbiota. Different percentages of natural infection by Wolbachia, Cardinium, and Microsporidia in phlebotomines and mosquitoes were detected. Phylogenetic analysis of Wolbachia shows putative new strains of Lutzomyia gomezi (wLgom), Brumptomyia hamata (wBrham), and a putative new group associated with Culex nigripalpus (Cnig) from the Andean region, located in Supergroup A and Supergroup B, respectively. The sequences of Microsporidia were obtained of Pi. pia and Cx. nigripalpus, which are located on phylogeny in the IV clade (terrestrial origin). The Cardinium of Tr. triramula and Ps. shannoni were located in group C next to Culicoides sequences while Cardinium of Mi. cayennensis formed two putative new subgroups of Cardinium in group A. In total were obtained 550 bacterial amplicon sequence variants (ASVs) and 189 taxa to the genus level. The microbiota profiles of Sand flies and mosquitoes showed mainly at the phylum level to Proteobacteria (67.6%), Firmicutes (17.9%) and Actinobacteria (7.4%). High percentages of relative abundance for Wolbachia (30%-83%) in Lu. gomezi, Ev. dubitans, Mi. micropyga, Br. hamata, and Cx. nigripalpus were found. ASVs assigned as Microsporidia were found in greater abundance in Pi. pia (23%) and Cx. nigripalpus (11%). An important finding is the detection of Rickettsia in Pi. pia (58,8%) and Bartonella sp. in Cx. nigripalpus. Conclusions/Significance We found that Wolbachia infection significantly decreased the alpha diversity and negatively impacts the number of taxa on sand flies and Culex nigripalpus. The Principal Coordinate Analysis (PCoA) is consistent, which showed statistically significant differences (PERMANOVA, F = 2.4744; R2 = 0.18363; p-value = 0.007) between the microbiota of sand flies and mosquitoes depending on its origin, host and possibly for the abundance of some endosymbionts (Wolbachia, Rickettsia). The secondary endosymbionts can positively influence the metabolism of many compounds essential for the survival of the insect vectors, provide resistance to pathogens and impact susceptibility to insecticides, as also the tolerance to heat stress. We provide information from new records of natural infection of secondary endosymbionts, such as Wolbachia, Cardinium, Microsporidia, Flavobacterium, and Rickettsia in phlebotomine sand flies and mosquitoes from Colombia. An important finding is the detection of Bartonella sp. in Cx. nigripalpus. Clear differences were found in the composition and diversity of microbiota at the intra-specific and interspecific levels in sand flies and Cx. nigripalpus, which may depend in the of the load of natural infection of endosymbionts (as Wolbachia), the geographical distribution and host.
Collapse
|
14
|
Kykalová B, Tichá L, Volf P, Loza Telleria E. Phlebotomus papatasi Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by Leishmania major Infection. Microorganisms 2021; 9:microorganisms9112307. [PMID: 34835433 PMCID: PMC8625375 DOI: 10.3390/microorganisms9112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.
Collapse
|
15
|
Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. INSECTS 2021; 12:insects12100871. [PMID: 34680640 PMCID: PMC8539649 DOI: 10.3390/insects12100871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Diverse strains of Wolbachia bacteria, carried by many arthropods, as well as some nematodes, interact in many different ways with their hosts. These include male killing, reproductive incompatibility, nutritional supplementation and suppression or enhancement of the transmission of diseases such as dengue and malaria. Consequently, Wolbachia have an important role to play in novel strategies to control human and livestock diseases and their vectors. Similarly, cell lines derived from insect hosts of Wolbachia constitute valuable research tools in this field. During the generation of novel cell lines from mosquito and sand fly vectors, we isolated two strains of Wolbachia and demonstrated their infectivity for cells from a range of other insects and ticks. These new insect cell lines and Wolbachia strains will aid in the fight against mosquitoes, sand flies and, potentially, ticks and the diseases that these arthropods transmit to humans and their domestic animals. Abstract Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host–endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.
Collapse
|
16
|
Cazan CD, Sándor AD, Erisoz Kasap O, Alten B, Mihalca AD. Sand fly fauna of South-Eastern Romania, with the description of Phlebotomus (Transphlebotomus) simonahalepae n. sp. (Diptera: Psychodidae). Parasit Vectors 2021; 14:448. [PMID: 34488868 PMCID: PMC8420062 DOI: 10.1186/s13071-021-04929-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background An entomological study was conducted in the Canaraua Fetii Special Protection Area in the Dobrogea region, South-Eastern Romania. Four sand fly species were recorded at this location between 1968 and 1970: Phlebotomus neglectus, Ph. balcanicus, Ph. sergenti and Sergentomyia minuta. The most abundant sand fly species recorded at that time were Ph. balcanicus and Se. minuta. In the context of a countrywide study to update the sand fly species diversity, we surveyed the same area, recording also a previously unknown Ph. (Transphlebotomus) sp., for which we provide a formal description here. Methods Sand flies were collected between July and August in 2018 and 2019 in three sites from Canaraua Fetii, Dobrogea region, Romania. The general aspect of the landscape is of a canyon (vertical, narrow walls and deep valleys). Species identification was done using both morphological and molecular analyses. Results Out of 645 collected sand flies, 644 (99.8%) were morphologically identified as Ph. neglectus, while one female specimen (0.2%) was assigned to a previously unknown species, belonging to the subgenus Transphlebotomus. The morphological and molecular examination of this specimen showed that it is a previously unknown species which we formally describe here as Phlebotomus (Transphlebotomus) simonahalepae n. sp. Also, Ph. balcanicus, Ph. sergenti, and Se. minuta (previously recorded in this location) were not present. Conclusions The study revealed for the first time the presence of sand flies of the subgenus Transphlebotomus in Romania. Moreover, a new species, Ph. simonahalepae n. sp., was described based on a female specimen, raising the number of species in this subgenus to six. In the investigated natural habitat, the predominant species was Ph. neglectus instead of Ph. balcanicus and Se. minuta (recorded as the predominant species in 1968–1970). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04929-6.
Collapse
Affiliation(s)
- Cristina Daniela Cazan
- CDS-9: Molecular Biology and Veterinary Parasitology Unit, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. .,Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Attila D Sándor
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Ozge Erisoz Kasap
- Department of Biology, Ecology Section, Faculty of Science, VERG Laboratories, Hacettepe University, Ankara, Turkey
| | - Bulent Alten
- Department of Biology, Ecology Section, Faculty of Science, VERG Laboratories, Hacettepe University, Ankara, Turkey
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|