1
|
Mustonen J, Vaheri A, Pörsti I, Mäkelä S. Long-Term Consequences of Puumala Hantavirus Infection. Viruses 2022; 14:v14030598. [PMID: 35337005 PMCID: PMC8953343 DOI: 10.3390/v14030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Several viral infections are associated with acute and long-term complications. During the past two years, there have been many reports on post-infectious symptoms of the patients suffering from COVID-19 disease. Serious complications occasionally occur during the acute phase of Puumala orthohantavirus caused nephropathia epidemica. Severe long-term consequences are rare. Fatigue for several weeks is quite common. Hormonal insufficiencies should be excluded if the patient does not recover normally.
Collapse
Affiliation(s)
- Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
- Correspondence:
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland;
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
| |
Collapse
|
2
|
Increased Heparanase Levels in Urine during Acute Puumala Orthohantavirus Infection Are Associated with Disease Severity. Viruses 2022; 14:v14030450. [PMID: 35336857 PMCID: PMC8954369 DOI: 10.3390/v14030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Old–world orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS), characterized by acute kidney injury (AKI) with transient proteinuria. It seems plausible that proteinuria during acute HFRS is mediated by the disruption of the glomerular filtration barrier (GFB) due to vascular leakage, a hallmark of orthohantavirus–caused diseases. However, direct infection of endothelial cells by orthohantaviruses does not result in increased endothelial permeability, and alternative explanations for vascular leakage and diminished GFB function are necessary. Vascular integrity is partly dependent on an intact endothelial glycocalyx, which is susceptible to cleavage by heparanase (HPSE). To understand the role of glycocalyx degradation in HFRS–associated proteinuria, we investigated the levels of HPSE in urine and plasma during acute, convalescent and recovery stages of HFRS caused by Puumala orthohantavirus. HPSE levels in urine during acute HFRS were significantly increased and strongly associated with the severity of AKI and other markers of disease severity. Furthermore, increased expression of HPSE was detected in vitro in orthohantavirus–infected podocytes, which line the outer surfaces of glomerular capillaries. Taken together, these findings suggest the local activation of HPSE in the kidneys of orthohantavirus–infected patients with the potential to disrupt the endothelial glycocalyx, leading to increased protein leakage through the GFB, resulting in high amounts of proteinuria.
Collapse
|
3
|
Martynova E, Davidyuk Y, Kabwe E, Garanina EE, Shakirova V, Pavelkina V, Uskova Y, Stott RJ, Foster TL, Markelova M, Goyal M, Gupta A, Bhola M, Kumar V, Baranwal M, Rizvanov AA, Khaiboullina SF. Cytokine, Chemokine, and Metalloprotease Activation in the Serum of Patients with Nephropathia Epidemica from the Republic of Tatarstan and the Republic of Mordovia, Russia. Pathogens 2021; 10:pathogens10050527. [PMID: 33925451 PMCID: PMC8145562 DOI: 10.3390/pathogens10050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/31/2022] Open
Abstract
Nephropathia Epidemica (NE), endemic to several Volga regions of Russia, including the Republic of Tatarstan (RT) and the Republic of Mordovia (RM), is a mild form of hemorrhagic fever with renal syndrome caused by infection with rodent-borne orthohantaviruses. Although NE cases have been reported for decades, little is known about the hantavirus strains associated with human infection in these regions. There is also limited understanding of the pathogenesis of NE in the RT and the RM. To address these knowledge gaps, we conducted comparative analyses of patients with NE in the RT and the RM. Clinical symptoms were more severe in patients with NE from the RM with longer observed duration of fever symptoms and hospitalization. Analysis of patient sera showed changes in the levels of numerous cytokines, chemokines, and matrix metalloproteases (MMPs) in patients with NE from both the RT and the RM, suggesting leukocyte activation, extracellular matrix degradation, and leukocyte chemotaxis. Interestingly, levels of several cytokines were distinctly different between patients NE from the RT when compared with those from the RM. These differences were not related to the genetic variation of orthohantaviruses circulating in those regions, as sequence analysis showed that Puumala virus (PUUV) was the causative agent of NE in these regions. Additionally, only the “Russia” (RUS) genetic lineage of PUUV was detected in the serum samples of patients with NE from both the RT and the RM. We therefore conclude that differences in serum cytokine, chemokine, and MMP levels between the RT and the RM are related to environmental factors and lifestyle differences that influence individual immune responses to orthohantavirus infection.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
- Correspondence:
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Venera Shakirova
- Infectious Diseases Department, Kazan State Medical Academy, 420012 Kazan, Russia;
| | - Vera Pavelkina
- Infectious Diseases Department, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (V.P.); (Y.U.)
| | - Yulia Uskova
- Infectious Diseases Department, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (V.P.); (Y.U.)
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Mehendi Goyal
- Doconvid.ai, Bestech Business Tower, Mohali 160055, India;
| | - Abhimat Gupta
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Mannan Bhola
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India; (M.B.); (M.B.)
| | - Vinay Kumar
- Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India; (M.B.); (M.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| |
Collapse
|