1
|
Krzyżek P, Dudek B, Brożyna M, Krzyżanowska B, Junka A. Galleria mellonella larvae as a model for Helicobacter pylori biofilm formation under antibiotic stress. Microb Pathog 2025; 198:107121. [PMID: 39551111 DOI: 10.1016/j.micpath.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Helicobacter pylori is a common Gram-negative bacterium that inhabits the human stomach and causes a variety of gastric pathologies. One of the growing concerns is its dynamic spread of antibiotic resistance, a process in which biofilm formation is involved. Therefore, it is necessary to find an appropriate, high-throughput research model for the in vivo biofilm development by H. pylori. The aim of the current research report was to determine the usefulness of G. mellonella larvae in assessing the survival of a multidrug-resistant, strong biofilm producing H. pylori strain during its exposure to stress caused by clarithromycin. Using infection models lasting for 3 or 6 days, we confirmed the ability of the tested H. pylori strain to survive in the larvae. We noticed that exposure to clarithromycin significantly reduced the number of cultured bacteria relative to the control, although we did not observe any differences in the number of bacteria using time-lapse, live analysis of fluorescently stained larval hemolymph samples. In conclusion, we confirmed that the examined H. pylori strain can produce biofilm in G. mellonella larvae organism and is able to survive exposure to minimal inhibitory concentrations of clarithromycin (established in vitro) in in vivo conditions. Further refinement of methodologies for monitoring the viability of clinical H. pylori strains in the greater wax moth larvae will enhance the accuracy and reliability of this promising research model.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Zang X, Pascoe B, Mourkas E, Kong K, Jiao X, Sheppard SK, Huang J. Evidence of potential Campylobacter jejuni zooanthroponosis in captive macaque populations. Microb Genom 2023; 9:001121. [PMID: 37877958 PMCID: PMC10634442 DOI: 10.1099/mgen.0.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium Campylobacter jejuni was isolated from macaques (Macaca mulatta and Macaca fascicularis) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for C. jejuni, 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with C. jejuni either directly from humans or via a common contamination source.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ke Kong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
3
|
Ju C, Ma Y, Zhang B, Zhou G, Wang H, Yu M, He J, Duan Y, Zhang M. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front Microbiol 2023; 14:1152719. [PMID: 37323906 PMCID: PMC10267384 DOI: 10.3389/fmicb.2023.1152719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of Campylobacter spp.in pets is a potential concern for human health. However, little is known about the pet-related Campylobacter spp. in China. A total of 325 fecal samples were collected from dogs, cats, and pet foxes. Campylobacter spp. were isolated by culture, and MALDI-TOF MS was used to identify 110 Campylobacter spp. isolates in total. C. upsaliensis (30.2%, 98/325), C. helveticus (2.5%, 8/325), and C. jejuni (1.2%, 4/325) were the three found species. In dogs and cats, the prevalence of Campylobacter spp. was 35.0% and 30.1%, respectively. A panel of 11 antimicrobials was used to evaluate the antimicrobial susceptibility by the agar dilution method. Among C. upsaliensis isolates, ciprofloxacin had the highest rate of resistance (94.9%), followed by nalidixic acid (77.6%) and streptomycin (60.2%). Multidrug resistance (MDR) was found in 55.1% (54/98) of the C. upsaliensis isolates. Moreover, 100 isolates, including 88 C. upsaliensis, 8 C. helveticus, and 4 C. jejuni, had their whole genomes sequenced. By blasting the sequence against the VFDB database, virulence factors were identified. In total, 100% of C. upsaliensis isolates carried the cadF, porA, pebA, cdtA, cdtB, and cdtC genes. The flaA gene was present in only 13.6% (12/88) of the isolates, while the flaB gene was absent. By analyzing the sequence against the CARD database, we found that 89.8% (79/88) of C. upsaliensis isolates had antibiotic target alteration in the gyrA gene conferring resistance to fluoroquinolone, 36.4% (32/88) had the aminoglycoside resistance gene, and 19.3% (17/88) had the tetracycline resistance gene. The phylogenetic analysis using the K-mer tree method obtained two major clades among the C. upsaliensis isolates. All eight isolates in subclade 1 possessed the gyrA gene mutation, the aminoglycoside and tetracycline resistance genes, and were phenotypically resistant to six classes of antimicrobials. It has been established that pets are a significant source of Campylobacter spp. strains and a reservoir for them. This study is the first to have documented the presence of Campylobacter spp. in pets in Shenzhen, China. In this study, C. upsaliensis of subclade 1 required additional attention due to its broad MDR phenotype and relatively high flaA gene prevalence.
Collapse
Affiliation(s)
- Changyan Ju
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yanping Ma
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Bi Zhang
- Clinic, IVC Shenzhen Animal Hospital, Shenzhen, China
| | - Guilan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hairui Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Muhua Yu
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Jiaoming He
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yongxiang Duan
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Nasher F, Wren BW. Transient internalization of Campylobacter jejuni in Amoebae enhances subsequent invasion of human cells. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35175913 PMCID: PMC8941996 DOI: 10.1099/mic.0.001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions, 11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host-cell-dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.
Collapse
Affiliation(s)
- Fauzy Nasher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Benoit SL, Maier RJ. Copper toxicity towards Campylobacter jejuni is enhanced by the nickel chelator dimethylglyoxime. Metallomics 2021; 14:6486457. [PMID: 34963007 DOI: 10.1093/mtomcs/mfab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022]
Abstract
The nickel (Ni)-chelator dimethylglyoxime (DMG) was found to be bacteriostatic towards Campylobacter jejuni. Supplementation of nickel to DMG-containing media restored bacterial growth, whereas supplementation of cobalt or zinc had no effect on the growth inhibition. Unexpectedly, the combination of millimolar levels of DMG with micromolar levels of copper (Cu) was bactericidal, an effect not seen in select Gram-negative pathogenic bacteria. Both the cytoplasmic Ni-binding chaperone SlyD and the twin arginine translocation (Tat)-dependent periplasmic copper oxidase CueO were found to play a central role in the Cu-DMG hypersensitivity phenotype. Ni-replete SlyD is needed for Tat-dependent CueO translocation to the periplasm, whereas Ni-depleted (DMG-treated) SlyD is unable to interact with the CueO Tat signal peptide, leading to mislocalization of CueO and increased copper sensitivity. In support of this model, C. jejuni ΔslyD and ΔcueO mutants were more sensitive to copper than the wild-type (WT); CueO was less abundant in the periplasmic fraction of ΔslyD or DMG-grown WT cells, compared to WT cells grown on plain medium; SlyD binds the CueO signal sequence peptide, with DMG inhibiting and nickel enhancing the binding, respectively. Injection of Cu-DMG into Galleria mellonella before C. jejuni inoculation significantly increased the insect survival rate compared to the control group. In chickens, oral administration of DMG or Cu-DMG decreased and even abolished C. jejuni colonization in some cases, compared to both water-only and Cu-only control groups. The latter finding is important, since campylobacteriosis is the leading bacterial foodborne infection, and chicken meat constitutes the major foodborne source.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| | - Robert J Maier
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
6
|
Ochoa S, Fernández F, Devotto L, France Iglesias A, Collado L. Virulence assessment of enterohepatic Helicobacter species carried by dogs using the wax moth larvae Galleria mellonella as infection model. Helicobacter 2021; 26:e12808. [PMID: 33884706 DOI: 10.1111/hel.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 04/05/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Enterohepatic species of the genus Helicobacter (EHH) are emerging pathogens that have been associated with gastrointestinal and hepatobiliary diseases in humans. However, studies on their pathogenicity are scarce. Galleria mellonella is a recently proposed model for the study of virulence in different pathogens, such as Campylobacter spp. and Helicobacter pylori. Despite this, its usefulness in EHH has not yet been evaluated. Therefore, we determined the pathogenic potential of different EHH species isolated from dogs in this infection model. MATERIALS AND METHODS Four species of EHH (H. bilis, H. canicola, H. canis, and 'H. winghamensis') isolated from fecal samples from domestic dogs were evaluated. Three strains of each species were inoculated in cohorts of G. mellonella at a concentration of 1 × 107 CFU/mL. Survival curves were determined by the Kaplan-Meier method. In addition, the quantification of melanin, bacterial load in hemolymph, and histopathology were evaluated daily post-infection (pi). RESULTS G. mellonella larvae are susceptible to EHH infection, exhibiting intra- and inter-species variability. Melanin production became evident from 4 h pi and increased throughout the assay. All species were recovered from the hemolymph after 20 min pi; however, only H. canis could be recovered up to 48 h pi. Histopathology revealed cellular and humoral immune response, evidencing accumulation of hemocytes, nodulation, and melanin deposition in different tissues. CONCLUSION EHH species carried by dogs have considerable pathogenic potential, being H. canicola the species with the highest degree of virulence. Thus, G. mellonella is a useful model to assess virulence in these emerging pathogens.
Collapse
Affiliation(s)
- Sofía Ochoa
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.,ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Fabiola Fernández
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Devotto
- Institute of Agricultural Research, Ministry of Agriculture, Chillán, Chile
| | | | - Luis Collado
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.,ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
7
|
Phylogenomic Characterization of a Novel Corynebacterium Species Associated with Fatal Diphtheritic Stomatitis in Endangered Yellow-Eyed Penguins. mSystems 2021; 6:e0032021. [PMID: 34100641 PMCID: PMC8269222 DOI: 10.1128/msystems.00320-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yellow-eyed penguins, Megadyptes antipodes, are an endangered species that are endemic to New Zealand. Outbreaks of diphtheritic stomatitis have caused significant mortality for this species, especially among young chicks. In this study, we isolated 16 Corynebacterium sp. isolates from the oral cavities of 2- to 14-day-old chicks at a range of infection stages and sequenced the genomes to understand their virulence mechanisms. Phylogenomic and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) characterization indicate that these strains belong to a novel Corynebacterium species. A simple multiplex PCR-based diagnostic assay has been developed to identify these strains rapidly and reliably. Similar to other corynebacteria, genomic islands and prophages introduced significant diversity among these strains that has potentially led to minor functional variations between the two lineages. Despite the presence of multiple corynebacterial virulence genes and a spaDEF-type pilus gene cluster among these strains, the survival rate was much higher in Galleria mellonella larvae than in those inoculated with Corynebacterium ulcerans NZRM 818 and Corynebacterium pseudotuberculosis NZRM 3004. Therefore, these strains are opportunistic pathogens causing high mortality among young penguin chicks due to a less-developed immune system. IMPORTANCE Yellow-eyed penguins, Megadyptes antipodes, are endangered species with a sharp decline in the numbers of breeding pairs over the last 2 decades. Diphtheritic stomatitis, characterized by a thick fibrinopurulent exudate in the oral cavities and symptoms, including inanition and significant weight loss, is responsible for significant mortality among the young chicks. These chicks are treated with antibiotics, amoxicillin-clavulanic acid or enrofloxacin, but do not always recover from the infection. The pathogen causing these infections and the mechanism of pathogenesis are unclear. This study has identified a novel Corynebacterium species to be associated with diphtheritic stomatitis in yellow-eyed penguins with potential virulence genes that are likely involved in pathogenesis. Importantly, a gene encoding an exotoxin, phospholipase D, is present among these strains. The inactivated form of this enzyme could potentially be used as an effective vaccine to protect these penguins from infection.
Collapse
|