1
|
Peterson PP, Croog S, Choi Y, Sun S, Heitman J. STRIPAK complex defects result in pseudosexual reproduction in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647827. [PMID: 40297506 PMCID: PMC12036433 DOI: 10.1101/2025.04.08.647827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
STRIPAK is an evolutionarily conserved signaling complex that coordinates diverse cellular processes across fungi and animals. In the human fungal pathogen Cryptococcus neoformans , STRIPAK was recently shown to play critical roles in maintaining genome stability and controlling both sexual and asexual development. In Cryptococcus , sexual reproduction is closely linked to virulence, and our findings demonstrate that the STRIPAK complex plays key roles in both processes. Here, we further investigate the specific roles of the STRIPAK catalytic subunit Pph22 and its regulatory partner Far8 during sexual development. We show that while pph22 Δ mutants are defective in α- a sexual reproduction, exhibiting impaired meiotic progression and a failure to produce viable spores, the deletion of PPH22 resulted in exclusive pseudosexual reproduction, with progeny inheriting nuclear genomes solely from the wild-type parent. Overexpression of PPG1 , a related phosphatase, rescued growth and developmental defects in pph22 Δ mutants, and restored the preference for α- a sexual reproduction over pseudosexual reproduction during mating, suggesting functional redundancy within the STRIPAK signaling network. Furthermore, deletion of FAR8 , another component of the STRIPAK complex, also led to a high rate of pseudosexual reproduction during α- a sexual mating, reinforcing the role of STRIPAK in modulating reproductive modes in C. neoformans , possibly through regulating nuclear inheritance and meiotic progression. Together, these findings highlight the distinct contributions of STRIPAK to sexual reproduction in C. neoformans and suggest that disruptions of this complex affect genome integrity and inheritance mechanisms, with broader implications for fungal adaptation and pathogenesis.
Collapse
|
2
|
Matha AR, Xie X, Maier RJ, Lin X. Nickel tolerance is channeled through C-4 methyl sterol oxidase Erg25 in the sterol biosynthesis pathway. PLoS Genet 2024; 20:e1011413. [PMID: 39283915 PMCID: PMC11426505 DOI: 10.1371/journal.pgen.1011413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Nickel (Ni) is an abundant element on Earth and it can be toxic to all forms of life. Unlike our knowledge of other metals, little is known about the biochemical response to Ni overload. Previous studies in mammals have shown that Ni induces various physiological changes including redox stress, hypoxic responses, as well as cancer progression pathways. However, the primary cellular targets of nickel toxicity are unknown. Here, we used the environmental fungus Cryptococcus neoformans as a model organism to elucidate the cellular response to exogenous Ni. We discovered that Ni causes alterations in ergosterol (the fungal equivalent of mammalian cholesterol) and lipid biosynthesis, and that the Sterol Regulatory Element-Binding transcription factor Sre1 is required for Ni tolerance. Interestingly, overexpression of the C-4 methyl sterol oxidase gene ERG25, but not other genes in the ergosterol biosynthesis pathway tested, increases Ni tolerance in both the wild type and the sre1Δ mutant. Overexpression of ERG25 with mutations in the predicted binding pocket to a metal cation cofactor sensitizes Cryptococcus to nickel and abolishes its ability to rescue the Ni-induced growth defect of sre1Δ. As overexpression of a known nickel-binding protein Ure7 or Erg3 with a metal binding pocket similar to Erg25 does not impact on nickel tolerance, Erg25 does not appear to simply act as a nickel sink. Furthermore, nickel induces more profound and specific transcriptome changes in ergosterol biosynthetic genes compared to hypoxia. We conclude that Ni targets the sterol biosynthesis pathway primarily through Erg25 in fungi. Similar to the observation in C. neoformans, Ni exposure reduces sterols in human A549 lung epithelial cells, indicating that nickel toxicity on sterol biosynthesis is conserved.
Collapse
Affiliation(s)
- Amber R. Matha
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
3
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
4
|
Ortiz SC, Hull CM. Biogenesis, germination, and pathogenesis of Cryptococcus spores. Microbiol Mol Biol Rev 2024; 88:e0019623. [PMID: 38440970 PMCID: PMC10966950 DOI: 10.1128/mmbr.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Matha AR, Xie X, Lin X. Ergosterol Is Critical for Sporogenesis in Cryptococcus neoformans. J Fungi (Basel) 2024; 10:106. [PMID: 38392778 PMCID: PMC10890046 DOI: 10.3390/jof10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Microbes, both bacteria and fungi, produce spores to survive stressful conditions. Spores produced by the environmental fungal pathogen Cryptococcus neoformans serve as both surviving and infectious propagules. Because of their importance in disease transmission and pathogenesis, factors necessary for cryptococcal spore germination are being actively investigated. However, little is known about nutrients critical for sporogenesis in this pathogen. Here, we found that ergosterol, the main sterol in fungal membranes, is enriched in spores relative to yeasts and hyphae. In C. neoformans, the ergosterol biosynthesis pathway (EBP) is upregulated by the transcription factor Sre1 in response to conditions that demand elevated ergosterol biosynthesis. Although the deletion of SRE1 enhances the production of mating hyphae, the sre1Δ strain is deficient at producing spores even when crossed with a wild-type partner. We found that the defect of the sre1Δ strain is specific to sporogenesis, not meiosis or basidium maturation preceding sporulation. Consistent with the idea that sporulation demands heightened ergosterol biosynthesis, EBP mutants are also defective in sporulation. We discovered that the overexpression of some EBP genes can largely rescue the sporulation defect of the sre1Δ strain. Collectively, we demonstrate that ergosterol is a critical component in cryptococcal preparation for sporulation.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Zhao Y, Lin X. Cryptococcus neoformans: Sex, morphogenesis, and virulence. INFECTION GENETICS AND EVOLUTION 2021; 89:104731. [PMID: 33497839 DOI: 10.1016/j.meegid.2021.104731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a dimorphic fungus that causes lethal meningoencephalitis mainly in immunocompromised individuals. Different morphotypes enable this environmental fungus and opportunistic pathogen to adapt to different natural niches and exhibit different levels of pathogenicity in various hosts. It is well-recognized that C. neoformans undergoes bisexual or unisexual reproduction in vitro to generate genotypic, morphotypic, and phenotypic diversity, which augments its ability for adaptation. However, if and how sexual reproduction and the meiotic machinery exert any direct impact on the infection process is unclear. This review summarizes recent discoveries on the regulation of cryptococcal life cycle and morphogenesis, and how they impact cryptococcal pathogenicity. The potential role of the meiotic machinery on ploidy regulation during cryptococcal infection is also discussed. This review aims to stimulate further investigation on links between fungal morphogenesis, sexual reproduction, and virulence.
Collapse
Affiliation(s)
- Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Chadwick BJ, Lin X. On the History and Applications of Congenic Strains in Cryptococcus Research. Pathogens 2020; 9:pathogens9090750. [PMID: 32942570 PMCID: PMC7560043 DOI: 10.3390/pathogens9090750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/23/2023] Open
Abstract
Congenic strains have been utilized in numerous model organisms to determine the genetic underpinning of various phenotypic traits. Congenic strains are usually derived after 10 backcrosses to a recipient parent, at which point they are 99.95% genetically identical to the parental strain. In recent decades, congenic pairs have provided an invaluable tool for genetics and molecular biology research in the Cryptococcus neoformans species complex. Here, we summarize the history of Cryptococcus congenic pairs and their application in Cryptococcus research on topics including the impact of the mating type locus on unisexual reproduction, virulence, tissue tropism, uniparental mitochondrial inheritance, and the genetic underpinning of other various traits. We also discuss the limitations of these approaches and other biological questions, which could be explored by employing congenic pairs.
Collapse
Affiliation(s)
- Benjamin J. Chadwick
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Xiaorong Lin
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA;
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|