1
|
Johnson AJ, Li W, Dittrich BI, Cole AC, Prodell MK, Lyons JW, Fritz SA, Fregulia P, Chen C, Kwon CH, Jang YD. Effect of second iron injection on growth performance, hematological parameters, and fecal microbiome of piglets fed different dietary iron levels. J Anim Sci 2025; 103:skae371. [PMID: 39657578 DOI: 10.1093/jas/skae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
This experiment was conducted to evaluate the effects of a second iron injection for suckling pigs fed diets with different dietary iron levels in the nursery period on growth performance, hematological parameters, serum and liver trace mineral content, fecal score, microbiome, and metabolites. A total of 70 newborn pigs from 7 litters were assigned to either 1 or 2 iron injections within the litter and received the first i.m. iron injection (200 mg) at 2 to 3 d of age. Pigs assigned to the second injection treatment received an additional iron injection 5 d after the first injection. At weaning (days 27 to 30 of age), pigs within iron injection treatments were divided into 2 nursery diet treatments for a 27-d growth period. Treatments were 1) no additional iron injection + nursery diets with 100 ppm iron (NC), 2) second i.m. iron injection (200 mg) + NC diets, 3) no additional iron injection + nursery diets with 200 ppm iron (PC), and 4) second i.m. iron injection (200 mg) + PC diets. The second iron injection increased liver iron content at weaning (P = 0.08, tendency), and serum iron, hemoglobin, and hematocrit levels until day 13 postweaning (P < 0.05). In the nursery period, pigs receiving the second iron injection had a greater final body weight (P = 0.08, tendency), overall growth rate (P = 0.08, tendency) and feed intake (P < 0.05), and lower fecal score (P < 0.05) indicating firmer feces compared to those receiving 1 iron injection. There was no major effect of dietary iron level or interaction with the iron injection treatment in any measurements except that the pigs fed the PC diets had greater hemoglobin and hematocrit levels (P < 0.05) at day 27 postweaning and a lower fecal score (P = 0.08, tendency) in the late nursery period than those fed the NC diets. The second iron injection reduced fecal bacterial alpha-diversity based on Faith's phylogenetic diversity at weaning (P < 0.05), while the second iron injection and dietary iron levels resulted in dissimilarity in the fecal bacterial community based on Unweighted Unifrac analysis (P < 0.05; at weaning by iron injection and day 27 postweaning by dietary iron level). In conclusion, the second iron injection for suckling pigs improved postweaning growth performance and hemoglobin levels and affected the fecal microbiome, whereas an additional 100 ppm of dietary iron supplementation increased hemoglobin levels and altered the fecal microbiome in the late nursery period but did not affect postweaning growth.
Collapse
Affiliation(s)
- Alaina J Johnson
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Wenli Li
- United States Department of Agriculture - Agricultural Research Service, US Dairy Forage Research Center, Madison, WI, 53706, USA
| | - Barbara I Dittrich
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Aleah C Cole
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Marie K Prodell
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | | | - Scott A Fritz
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Priscila Fregulia
- United States Department of Agriculture - Agricultural Research Service, US Dairy Forage Research Center, Madison, WI, 53706, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Chi Chen
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Chan Ho Kwon
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Young Dal Jang
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Merlot E, Clouard C, Resmond R, Robert C, Ferchaud S, Prunier A. Effects of natural oral alternatives to parental iron supplementation on haematological and health-related blood parameters of organic piglets. Animal 2024; 18:101194. [PMID: 39213908 DOI: 10.1016/j.animal.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 09/04/2024] Open
Abstract
The most common and efficient iron supply to prevent neonatal anaemia in piglets is the injection of iron dextran or gleptoferron. This treatment is problematic in organic farms because organic specifications strictly limit the use of chemically synthesised allopathic drugs. Based on the observation that piglets raised outdoors rarely develop anaemia, we hypothesised that piglets satisfy their iron needs by ingesting soil from their environment. Therefore, we compared the efficacy of a 100-mg intramuscular iron dextran injection (Iron, 8 litters, n = 98 piglets) at 4 days (d) of age (d4), to a daily ad libitum supply of dried soil (Soil, 8 litters, n = 101) or dried peat-like river silt (Peat, 8 litters, n = 102) from d4 to weaning (at 49 days of age, d49). Pigs were raised according to organic farming rules. Blood was collected on three males and three females per litter on d4, 20, 41, 50 and 69. BW was similar in the three groups on d4, 20, 41, 50 and 69 (P > 0.1). During the experiment, piglets were affected by a severe digestive E. coli episode but litter mortality rate between d4 and d69 did not differ between groups (P > 0.1). Blood haemoglobin concentration (Hb) was similar in all groups on d4, 50 and 69. However, on d20, Hb was higher in Peat and Iron groups than in the Soil group (P < 0.001), and on d41 and d50, Hb was higher in the Peat group than in Iron and Soil groups (P < 0.001). Mean red blood cell volume (RBCV) remained stable over time in the Peat group. In comparison, RBCV dropped in the Soil group on d20 and d41 (P < 0.001), and in the Iron group on d41 (P < 0.001). Soil and Iron group RBCV returned values similar to the Peat group by d69 (P > 0.1). In conclusion, soil supply in the pen was not sufficient to ensure a satisfactory iron intake in piglets, unlike peat-like river silt, which enable to reach haemoglobin concentrations above 80 mg/mL for over 90% of the piglets from d20 and, over 100% of piglets at weaning. The daily supply of the silt proved more efficient than the 100-mg iron injection beyond 20 days.
Collapse
Affiliation(s)
- E Merlot
- PEGASE, INRAE, Institut Agro Rennes-Angers, 35590 Saint Gilles, France.
| | - C Clouard
- PEGASE, INRAE, Institut Agro Rennes-Angers, 35590 Saint Gilles, France
| | - R Resmond
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes 1, 35653 Le Rheu, France
| | - C Robert
- PEGASE, INRAE, Institut Agro Rennes-Angers, 35590 Saint Gilles, France
| | - S Ferchaud
- GENESI, INRAE, Venours, 86480 Rouillé, France
| | - A Prunier
- PEGASE, INRAE, Institut Agro Rennes-Angers, 35590 Saint Gilles, France
| |
Collapse
|
3
|
Liu HW, Gao LM, Liu GY, Tai WJ, Xie CY, Wu X. Effects of Maternal Dietary Enteromorpha prolifera Polysaccharide Iron Supplement on Mineral Elements and Iron Level of Neonatal Piglets. Biol Trace Elem Res 2024; 202:2588-2597. [PMID: 37758982 DOI: 10.1007/s12011-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Iron plays a key role in maternal health during pregnancy and fetal growth. Enteromorpha polysaccharide-iron (EP-Fe) as an organic iron chelate may improve the iron transmission of mother and offspring, ameliorate the poor pregnancy outcomes of sows, and alleviate the growth restriction of piglets caused by iron deficiency. This study aimed to evaluate the effects of maternal dietary supplementation with EP-Fe on reproductive performance and placental iron transmission of sows, as well as growth performance of piglets. Sixty pregnant sows at the 95th day of gestation were randomly divided into control group and EP-Fe group (EP-Fe, 139 mg kg-1). Blood samples of sows and neonatal piglets, colostrum, and tissue samples were collected on the day of delivery. The animal experiment ended at the 21st day of post-delivery. Results showed that maternal dietary EP-Fe increased colostrum iron (P < 0.05) of sows, as well as final litter weight (P < 0.05) and average daily weight of piglets (P < 0.05) during days 1-21 of lactation, as well as iron and manganese content in umbilical cord blood (P < 0.05) and hepatic iron of neonatal piglets (P < 0.01), and decreased fecal iron (P < 0.001), serum calcium (P < 0.05), phosphorus (P < 0.05), and zinc (P < 0.01) in the parturient sow. RT-qPCR results showed that Fpn1 and Zip14 in placenta, as well as TfR1 and Zip14 in duodenum of neonatal piglets, were activated by maternal EP-Fe supplement. These findings suggest that maternal dietary EP-Fe could increase iron storage of neonatal piglets via improving placental iron transport and iron secretion in colostrum, thus enhancing the growth performance of sucking piglets.
Collapse
Affiliation(s)
- Hong-Wei Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Lu-Min Gao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Gang-Yi Liu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wen-Jing Tai
- Qingdao Seawin Biotech Group Co., Ltd., Qingdao, 266071, China
| | - Chun-Yan Xie
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Livestock and Poultry Health Breeding Technology Engineering Center, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Xin Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
4
|
Fjelkner J, Sannö A, Emanuelson U. Iron status in piglets at three days of age and at weaning and possible seasonal effects on the blood haemoglobin levels in a Swedish outdoor pig-producing farm. Acta Vet Scand 2024; 66:13. [PMID: 38504355 PMCID: PMC10953155 DOI: 10.1186/s13028-024-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Piglets are born with limited stores of iron, and with an increasing number of live-born piglets, there may be a risk that the sows cannot provide enough iron to their offspring. The iron content in soil may not meet the demands of today's piglet, born and reared in an outdoor setting. The study aimed to describe the blood haemoglobin (Hb) levels in pigs reared outdoors and to determine whether piglets have higher Hb levels at weaning when an iron supplement is administered intramuscularly at three days of age, as compared to pigs not given an iron supplement. The seasonal variation in Hb-levels was also to be investigated. The Hb concentration was analysed with a HemoCue 201 + Hb photometer. RESULTS In total 56 litters (399 piglets) were included in the study and sampled at three days of age, while 378 piglets were sampled at weaning. The mean Hb level at three days of age was 91 g/L (48-154 g/L). In total 47% of the piglets had Hb levels < 90 g/L at three days of age. The mean Hb level at weaning was 127 g/L (76-176 g/L), with a lower level (122 g/L) in the group given the iron supplement than in the group not given an iron supplement (132 g/L). Only 1% of the piglets had Hb levels lower than 90 g/L at weaning. Results indicative of a seasonal effect on Hb levels at three days of age was demonstrated. Piglets born in spring had significantly lower Hb levels, and piglets born in autumn had significantly higher Hb levels. No seasonal effect could be demonstrated for Hb levels at day 33. CONCLUSIONS The results indicate that the natural uptake from the environment was sufficient, but that there was a seasonal effect on the Hb levels at three days of age. This indicates that there might be a need for different routines regarding iron supplementation in outdoor reared piglets depending on the climate and season.
Collapse
Affiliation(s)
| | - Axel Sannö
- Farm & Animal Health, Kungsängens Gård, SE-753 23, Uppsala, Sweden
- Department of Clinical Science, Swedish University of Agricultural Sciences, SE- 75007, Uppsala, POB 7054, Sweden
| | - Ulf Emanuelson
- Department of Clinical Science, Swedish University of Agricultural Sciences, SE- 75007, Uppsala, POB 7054, Sweden
| |
Collapse
|
5
|
Kopeć Z, Mazgaj R, Starzyński RR, Wang X, Opiela J, Smorąg Z, Gajda B, Nicpoń J, Lenartowicz M, Ogłuszka M, Gralak MA, Lipiński P. Impact of litter size on the hematological and iron status of gilts, sows and newborn piglets: a comparative study of domestic pigs and wild boars. BMC Vet Res 2024; 20:64. [PMID: 38389107 PMCID: PMC10885442 DOI: 10.1186/s12917-024-03905-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The critically low hepatic iron stores of newborn piglets are considered to be a major cause of neonatal iron deficiency in modern breeds of domestic pig (Sus domestica). The main factor believed to contribute to this phenomenon is large litter size, which has been an objective of selective breeding of pigs for decades. As consequence, iron transferred from the pregnant sow has to be distributed among a greater number of fetuses. RESULTS Here, we investigated whether litter size influences red blood cell (RBC) indices and iron parameters in Polish Large White (PLW) piglets and gilts. Small and large litters were produced by the transfer of different numbers of embryos, derived from the same superovulated donor females, to recipient gilts. Piglets from large litters obtained following routine artificial insemination were also examined. Our results clearly demonstrated that varying the number of piglets in a litter did not affect the RBC and iron status of 1-day-old piglets, with all showing iron deficiency anemia. In contrast, gilts with small litters displayed higher RBC and iron parameters compared to mothers with large litters. A comparative analysis of the RBC status of wild boars (having less than half as many piglets per litter as domestic pigs) and PLW pigs, demonstrated higher RBC count, hemoglobin level and hematocrit value of both wild boar sows and piglets, even compared to small-litter PLW animals. CONCLUSIONS These findings provide evidence that RBC and iron status in newborn PLW piglets are not primarily determined by litter size, and indicate the need to study the efficiency of iron transport across the placenta in domestic pig and wild boar females.
Collapse
Affiliation(s)
- Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Xiuying Wang
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Jolanta Opiela
- National Research Institute of Animal Production, Balice, Poland
| | - Zdzisław Smorąg
- National Research Institute of Animal Production, Balice, Poland
| | - Barbara Gajda
- National Research Institute of Animal Production, Balice, Poland
| | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Magdalena Ogłuszka
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Mikołaj Antoni Gralak
- Department of Physiological Sciences, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
6
|
Zeng Y, Zhou B, Huang L, Liu Y. Iron-rich Candida utilis improves intestinal health in weanling piglets. J Appl Microbiol 2023; 134:lxad135. [PMID: 37401152 DOI: 10.1093/jambio/lxad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
AIM This study aimed to investigate the effects of substituting inorganic iron in the diet of weanling piglets with iron-rich Candida utilis on gut morphology, immunity, barrier, and microbiota. METHODS AND RESULTS Seventy-two healthy 28-day-old Duroc × Landrace × Yorkshire desexed male weanling piglets were randomly assigned to 2 groups (n = 6), with 6 pens per group and 6 piglets in each pen. The control group was fed a basal diet containing ferrous sulfate (104 mg kg-1 iron), while the experimental group was fed a basal diet supplemented with iron-rich C. utilis (104 mg kg-1 iron). The results show that the growth performance of weanling piglets showed no significantly differences (P > 0.05). Iron-rich C. utilis significantly elevated villus height and decreased crypt depth in the duodenum and jejunum (P < 0.05). Additionally, there was a significant increase in SIgA content, a down-regulated of pro-inflammatory factors expression, and an up-regulated of anti-inflammatory factors expression in the jejunum and ileum of piglets fed iron-rich C. utilis (P < 0.05). The mRNA expression levels of ZO-1, Claudin-1, Occludin, and Mucin2 in the jejunum were significantly increased by iron-rich C. utilis, and were significantly increased ZO-1 and Claudin-1 in the ileum (P < 0.05). The colonic microbiota, however, was not significantly affected by iron-rich C. utilis (P > 0.05). CONCLUSION Iron-rich C. utilis improved intestinal morphology and structure, as well as intestinal immunity and intestinal barrier function.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha 410009, China
| | - LiHong Huang
- Hunan Institute of Microbiology, Changsha 410009, China
| | - YuBo Liu
- Hunan Institute of Microbiology, Changsha 410009, China
| |
Collapse
|
7
|
Sarkar VK, De UK, Kala A, Chauhan A, Verma AK, Paul BR, Soni S, Chaudhuri P, Patra MK, Gaur GK. Effects of oral probiotic and lactoferrin interventions on iron-zinc homeostasis, oxidant/antioxidant equilibrium and diarrhoea incidence of neonatal piglets. Benef Microbes 2023; 14:197-208. [PMID: 37026367 DOI: 10.3920/bm2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
The objective of this study was to examine the effects of early-life host specific probiotic and lactoferrin (LF) supplementations on diarrhoea incidence, iron (Fe)-zinc (Zn) balance and antioxidant capabilities in serum of neonatal piglets. A total of eight sow litters obtained from parity matched sows were randomly divided into four groups and assigned to one of the four interventions: control (2.0 ml normal saline), bovine lactoferrin (bLF) (100 mg bLF in normal saline), probiotic (Pb) (1×109 cfu of swine origin Pediococcus acidilactici FT28 strain) and bLF+Pb (both 100 mg bLF and 1×109 cfu of P. acidilactici FT28). All the piglets received supplementations once daily orally for first 7 days of life. The incidence of diarrhoea markedly decreased in bLF group compared to control group. Notably, no incidences of diarrhoea were recorded in Pb and bLF+Pb groups. The Zn and Fe concentrations were significantly increased from day 7 to 21 in bLF and on day 21 in bLF+Pb group. No such changes were noted in Pb group. Total antioxidant capacity (TAC) in serum was significantly increased on days 7 and 15 in bLF group and on days 7 and 21 in bLF+Pb group. Malonaldehyde concentration was markedly reduced from day 7 to 21 in bLF and bLF+Pb groups. The concentrations of nitrate on days 15 and 21 and malonaldehyde on day 7 were significantly higher in Pb group, but mean TAC was unaltered from day 0 to 21. Although no correlation between the incidence of diarrhoea and Zn/Fe and oxidant/antioxidant homeostasis was noted in the Pb group, the supplementation of P. acidilactici FT28 alone was sufficient to prevent the incidence of diarrhoea in neonatal piglets. Taken together, it is concluded that strategic supplementation of P. acidilactici FT28 in early life could help in preventing diarrhoea until weaning of piglets.
Collapse
Affiliation(s)
- V K Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - U K De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A K Verma
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - B R Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - S Soni
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - P Chaudhuri
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - M K Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| |
Collapse
|
8
|
Tobias TJ, Vernooij JCM, van Nes A. Comparison of efficacy of needle-free injection versus injection by needle for iron supplementation of piglets: a double blind randomized controlled trial. Porcine Health Manag 2023; 9:2. [PMID: 36642740 PMCID: PMC9841657 DOI: 10.1186/s40813-022-00296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/09/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In pig husbandry, most piglets receive an intramuscular injection with iron around three days of age for the prevention of hypochromic, microcytic anaemia. In recent years an increased interest is noted for needle-free injections, because of efficiency and safety for man and animal. This study aims to support the evidence on efficacy to extent the registration of a commercial iron supplement with a needle-free administration application. To this aim the study has two objectives: 1) to determine the effect of needle-free injection of the iron supplement on the mean blood Haemoglobin level at weaning, as primary outcome, and mean Haematocrit and mean Body weight of pigs at weaning as secondary outcome compared to no treatment, as main determinant of iron deficiency anaemia in piglets at time of weaning; 2) to compare the effects of needle-free administration of the iron supplement with regular injection by needle, with regard to the course over time of Haemoglobin, Haematocrit, piglet growth and the differentiated haematological and serum iron parameters. METHODS A double blind randomized controlled trial was conducted with 72 piglets, 8 piglets per litter from 9 litters. At three days of age pigs were selected, based on body weight, and random allocated to three study groups: a) control non-treated group (2 pigs per litter, 18 in total), b) a group with regular iron injection by needle injection (3 pigs per litter, 27 in total), c) a group that received iron by needle-free injection (3 pigs per litter, 27 in total). At four points in time (day 3, 14, 26 and 40) piglets were weighed and bled to analyse the dynamics of red blood counts and haematological parameters as well as serum iron parameters. The primary outcome parameter was the Haemoglobin (Hb) level on day 26. Of secondary importance were Haematocrit (Ht) and body weight (BW) at weaning and parameters with tertiary importance were the course of Hb, Ht and differentiated red blood cell parameters, serum iron, iron binding capacity and iron saturation. In the statistical analyses, linear mixed effect regression modelling was used to account for repeated measures within litters and pigs. RESULTS The analyses showed that needle-free administration was as efficacious to prevent iron deficiency anaemia at day 26 as administration using regular needle injection, compared to the control group. The mean level of Hb and Ht of pigs in the needle and needle-free group did not differ significantly. No side effects were observed. CONCLUSION It is concluded that needle-free iron administration of the tested product is as efficacious as regular administration by needle injection.
Collapse
Affiliation(s)
- T. J. Tobias
- grid.5477.10000000120346234Department of Population Health Sciences, Farm Animal Health Unit, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584CL Utrecht, The Netherlands
| | - J. C. M. Vernooij
- grid.5477.10000000120346234Department of Population Health Sciences, Farm Animal Health Unit, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584CL Utrecht, The Netherlands
| | - A. van Nes
- grid.5477.10000000120346234Department of Population Health Sciences, Farm Animal Health Unit, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584CL Utrecht, The Netherlands
| |
Collapse
|
9
|
Palsa K, Connor JR, Flanagan J, Hines EA. H-ferritin in sows' colostrum- and milk-derived extracellular vesicles: a novel iron delivery concept. J Anim Sci 2023; 101:skad013. [PMID: 36629252 PMCID: PMC9910394 DOI: 10.1093/jas/skad013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Iron deficiency anemia is a significant problem in piglets, as they are born with insufficient iron stores for supporting their rapid body growth. Further, sows' milk contains inadequate iron levels for meeting the demands of piglet rapid growth in the pre-wean stage. The forms of iron present in the milk are essential to understanding bioavailability and potential routes for supplementing iron to mitigate iron deficiency anemia in piglets. Recently, our studies showed that H-ferritin (FTH1) is involved in iron transport to different tissues and can be used as an oral iron supplement to correct iron deficiency in rats and monkeys. In this study, we investigate the FTH1 levels in colostrum and milk in Yorkshires-crossbred sows (n = 27) and collected samples at the 1st, 15th, and 28th days of lactation to measure FTH1. Colostrum and milk were found to have FTH1, but there is no significant difference between the different days of lactation. FTH1 has been observed to be enriched in extracellular vesicles (EVs) of other species, and therefore examined the EVs in the samples. Colostrum-derived EVs were enriched with L-ferritin compared to FTH1, while in milk-derived EVs, only FTH1 was detected (P = 0.04). In milk-derived EVs, FTH1 was significantly higher (P = 0.021; P = 006) than FTH1 in colostrum-derived EVs. Furthermore, FTH1 levels of milk-derived EVs were significantly higher (P = 0.0002; P = 0004) than whole milk and colostrum FTH1. These results indicate that FTH1 is enriched in the milk-derived EVs and suggest that EVs play a predominant role in the FTH1 delivery mechanism for the piglet. The extent to which FTH1 in EVs accounts for the overall iron delivery mechanism in piglets is yet to be determined.
Collapse
Affiliation(s)
- Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - John Flanagan
- Department of Biochemistry and Molecular biology, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Hines
- Department of Animal Science, College of Agricultural Sciences, Penn State University, University Park, PA, USA
| |
Collapse
|
10
|
Huang RQ, Yang XJ, Xie GM, Li J, Jian YH, Yang J, Zhu YW. Effects of dietary iron sources on growth performance, iron status, Fe-containing enzyme activity and gene expression related to iron homeostasis in tissues of weaned pigs. Front Vet Sci 2023; 10:1111257. [PMID: 36968478 PMCID: PMC10031648 DOI: 10.3389/fvets.2023.1111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this study is to evaluate the effects of dietary iron sources on growth performance, iron status and activities of Fe-containing enzymes and gene expression related to iron homeostasis in tissues of weaned pigs. A total of 480 piglets at d 28 (Duroc X Landrace) were allotted to four groups as a factorial arrangement of treatments with 30 pigs/pen (male: female = 1:1) and 4 replicate pens/treatment. The treatments for iron in the diets were: control basal diet (Con); Con + 150 mg Fe/kg as inorganic Fe (iFe); Con + 75 mg Fe/kg as inorganic Fe + 75 mg Fe/kg as organic Fe-peptide complex (iFe+oFe) and Con + 150 mg of Fe/kg as organic Fe-peptide complex (oFe). The feeding trial lasted for 36 days. There were no significant differences in final body weight, ADG, ADFI, and G/F as well as blood hemoglobin and MCHC contents between piglets fed the control and iron-supplemented groups (P > 0.05). The iron supplemented groups exhibited increased iron content in the liver, kidney and spleen as well as the CAT and SDH activities in liver compared to the control group (P < 0.05), while piglets in oFe group experienced greater Fe accumulation and activities of CAT and SDH in the liver than piglets in the iFe group. Compared with the control group, dietary supplementation of iron increased the NCOA4 mRNA expression and decreased the TfR1 mRNA expression in liver of piglets. The TfR1, NCOA4 and Ferritin mRNA expressions of bone marrow in both iFe and iFe+oFe groups were greater than both in the Con and oFe groups. These results suggest that dietary supplementation of iron does not influence the growth performance and hematological parameters in weaned pigs fed a corn-soybean meal basal diet (75.8 mg/kg) from d 28 to d 70, but increased tissue iron status and activities of Fe-containing enzymes at d 70. The addition of organic Fe-peptide complexes presents greater beneficial effects on enhancing tissue Fe accumulation and Fe-containing enzyme activities, which may be involved in different gene expression patterns related to iron intake and transport in tissues of weaned pigs.
Collapse
Affiliation(s)
- Ru-Qu Huang
- Guangdong Guangken Animal Husbandry Group Co., Ltd., Guangzhou, China
| | - Xiao-Jie Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gao-Mao Xie
- Guangdong AIB Polytechnic College, Guangzhou, China
| | - Jie Li
- Guangdong Guangken Animal Husbandry Group Co., Ltd., Guangzhou, China
| | - Yun-Hua Jian
- Guangdong Guangken Animal Husbandry Group Co., Ltd., Guangzhou, China
| | - Jing Yang
- Guangdong Guangken Animal Husbandry Group Co., Ltd., Guangzhou, China
- *Correspondence: Jing Yang
| | - Yong-Wen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
- Yong-Wen Zhu
| |
Collapse
|
11
|
Albers SE, Pintens EA, Isensee PK, Lemanski CM, Jang YD. Effect of Additional Iron Injection to Suckling Pigs on Hematocrit Level during the Suckling Period. Animals (Basel) 2022; 12:ani12212980. [PMID: 36359104 PMCID: PMC9657852 DOI: 10.3390/ani12212980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of additional iron injection to suckling piglets on hematocrit level during the suckling period. In Experiment 1, a total of 24 piglets were allotted into 3 treatments within litter based on body weight and sex at d 1 of age. Treatments were: (1) Control: a 200 mg iron-dextran intramuscular injection only at d 0 of experiment (d 1 of age), (2) Iron100: intramuscular iron-dextran injections at d 0 (200 mg iron) and 15 (11 d before weaning) of experiment (100 mg iron), and (3) Iron200: intramuscular iron-dextran injections at d 0 (200 mg iron) and 15 of experiment (200 mg iron). In Experiment 2, a total of 20 piglets were allotted into 2 treatments within litter based on body weight and sex at d 1 to 2 of age. Treatments were: (1) Iron100b: 100 mg iron-dextran intramuscular injection at d 0 of experiment (d 1 to 2 of age), and (2) Iron200b: 200 mg iron-dextran intramuscular injection at d 0 of experiment. An additional 200 mg iron-dextran was injected to all piglets intramuscularly at d 14 of experiment (11 d before weaning). In Experiment 1, there was no difference in hematocrit levels among treatments at d 15 of experiment. Both iron treatments had greater hematocrit levels than the Control treatment at d 22 and 26 of experiment (p < 0.05). The Iron200 treatment had greater hematocrit level at d 26 of experiment (p < 0.05) and tended to have a greater increase of hematocrit levels in d 22 to 26 of experiment (p = 0.09) than the Iron100 treatment. In Experiment 2, the Iron200b treatment had greater hematocrit levels than the Iron100b treatment in d 14 and 25 (p < 0.05) of experiment. Hematocrit level changes tended to be greater in the Iron200b treatment in d 0 to 14 (p = 0.08) of experiment but lower in d 14 to 25 (p < 0.05) of experiment than the Iron100b treatment. The additional iron injection to suckling piglets increased hematocrit levels with greater values at weaning in the higher injection level whereas the increase was greater when the hematocrit level was low at the time of additional injection.
Collapse
|
12
|
Effects of Feeding 5-Aminolevulinic Acid on Iron Status in Weaned Rats from the Female Rats during Gestation and Lactation. Animals (Basel) 2022; 12:ani12202869. [PMID: 36290255 PMCID: PMC9598332 DOI: 10.3390/ani12202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Using female Sprague−Dawley (SD) rats as a model, the current study aimed to investigate whether feeding 5-aminolevulinic acid (5-ALA) to female SD rats during gestation and lactation can affect the iron status of weaned rats and provide new ideas for the iron supplementation of piglets. A total of 27 pregnant SD rats were randomly assigned to three treatments in nine replicates, with one rat per litter. Dietary treatments were basal diet (CON), CON + 50 mg/kg 5-ALA (5-ALA50), and CON + 100 mg/kg 5-ALA (5-ALA100). After parturition, ten pups in each litter (a total of 270) were selected for continued feeding by their corresponding mother, and the pregnant rats were fed diets containing 5-ALA (0, 50 and 100 mg/kg diet) until the newborn pups were weaned at 21 days. The results showed that the number of red blood cells (RBCs) in weaned rats in the 5-ALA100 group was significantly higher (p < 0.05) than that in the CON or 5-ALA50 group. The diet with 5-ALA significantly increased (p < 0.05) the hemoglobin (HGB) concentration, hematocrit (HCT) level, serum iron (SI) content, and transferrin saturation (TSAT) level in the blood of weaned rats, as well as the concentration of Hepcidin in the liver and serum of weaned rats and the expression of Hepcidin mRNA in the liver of weaned rats, with the 5-ALA100 group having the highest (p < 0.05) HGB concentration in the weaned rats, and the 5-ALA50 group having the highest (p < 0.05) Hepcidin concentration in serum and in the expression of Hepcidin mRNA in the liver of weaned rats. The other indicators between the 5-ALA groups had no effects. However, the level of total iron binding capacity (TIBC) was significantly decreased (p < 0.05) in the 5-ALA50 group. Moreover, the iron content in the liver of weaned rats fed with 5-ALA showed an upward trend (p = 0.085). In addition, feeding a 5-ALA-supplemented diet could also significantly reduce (p < 0.05) the expression of TfR1 mRNA in the liver of weaning rats (p < 0.05), and the expression of Tfr1 was not affected between 5-ALA groups. In conclusion, dietary supplementation with 5-ALA could improve the blood parameters, increase the concentration of Hepcidin in the liver and serum, and affect the expression of iron-related genes in the liver of weaned rats. Moreover, it is appropriate to add 50 mg/kg 5-ALA to the diet under this condition.
Collapse
|
13
|
Abbas M, Hayirli Z, Drakesmith H, Andrews SC, Lewis MC. Effects of iron deficiency and iron supplementation at the host-microbiota interface: Could a piglet model unravel complexities of the underlying mechanisms? Front Nutr 2022; 9:927754. [PMID: 36267902 PMCID: PMC9577221 DOI: 10.3389/fnut.2022.927754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023] Open
Abstract
Iron deficiency is the most prevalent human micronutrient deficiency, disrupting the physiological development of millions of infants and children. Oral iron supplementation is used to address iron-deficiency anemia and reduce associated stunting but can promote infection risk since restriction of iron availability serves as an innate immune mechanism against invading pathogens. Raised iron availability is associated with an increase in enteric pathogens, especially Enterobacteriaceae species, accompanied by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli and may skew the pattern of gut microbiota development. Since the gut microbiota is the primary driver of immune development, deviations from normal patterns of bacterial succession in early life can have long-term implications for immune functionality. There is a paucity of knowledge regarding how both iron deficiency and luminal iron availability affect gut microbiota development, or the subsequent impact on immunity, which are likely to be contributors to the increased risk of infection. Piglets are naturally iron deficient. This is largely due to their low iron endowments at birth (primarily due to large litter sizes), and their rapid growth combined with the low iron levels in sow milk. Thus, piglets consistently become iron deficient within days of birth which rapidly progresses to anemia in the absence of iron supplementation. Moreover, like humans, pigs are omnivorous and share many characteristics of human gut physiology, microbiota and immunity. In addition, their precocial nature permits early maternal separation, individual housing, and tight control of nutritional intake. Here, we highlight the advantages of piglets as valuable and highly relevant models for human infants in promoting understanding of how early iron status impacts physiological development. We also indicate how piglets offer potential to unravel the complexities of microbiota-immune responses during iron deficiency and in response to iron supplementation, and the link between these and increased risk of infectious disease.
Collapse
Affiliation(s)
- Munawar Abbas
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Zeynep Hayirli
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon C. Andrews
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Marie C. Lewis
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
14
|
Le Floc'h N, Achard CS, Eugenio FA, Apper E, Combes S, Quesnel H. Effect of live yeast supplementation in sow diet during gestation and lactation on sow and piglet fecal microbiota, health and performance. J Anim Sci 2022; 100:6604467. [PMID: 35675760 DOI: 10.1093/jas/skac209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
Feeding probiotics like live yeast Saccharomyces cerevisiae var. boulardii (SB) in pig diets has been suggested to preserve health and reduce antibiotic use during critical periods like weaning. This study was conducted to determine whether SB added in the diet of sows during the last 2 mo of gestation and the 4 wk of lactation may contribute to supporting health and performance of piglets before and after weaning through changes in sow physiology, milk composition and fecal microbiota. Crossbred sows (n=45) from parity 1 to 9 were allocated to two dietary treatments, Control (n=23) and SB (n=22). Sows in the SB group were fed the same standard gestation then lactation diet as the Control sows but with the addition of SB at 1x10 9 colony forming units/kg of feed. Piglets were weaned under challenging conditions consisting in mixing of litters, no pen cleaning and a 2-h period of non-optimal temperature exposure. Blood and feces were collected from sows on d 28 and 113 of gestation and d 6 (feces only) and 28 of lactation, and from piglets on d 6 (feces) and 28 of lactation and d 5 after weaning. Colostrum was collected during parturition and milk on d 6 of lactation. Supplementation of sow diets with SB influenced the fecal microbiota of the sows and their piglets. Five days after weaning, the alpha-diversity was lower (P < 0.05) in piglets from SB sows than in piglets from Control sows. Analysis of microbiota with Partial Least Square Discriminant Analysis discriminated feces from SB sows from that of Control sows at 110 d of gestation (29.4% error rate). Piglet feces could also be discriminated according to the diet of their mother, with a better discrimination early after birth (d 6 of lactation) than after weaning (d 5 post-weaning, 3.4% vs 12.7% error rate). Five d after weaning, piglets had greater white blood cell count, plasma haptoglobin concentration, and oxidative stress than before weaning (P <0.001). Nevertheless, SB supplementation in sow diets had no effect (P > 0.05) on most of health criteria measured in blood and growth performance of piglets during lactation and the post-weaning period. Moreover, dietary supplementation of SB to sows did not elicit any changes (P > 0.05) in their reproductive performance, metabolic and health status, nor in the immunoglobulin and nutrient concentration of colostrum and milk. In the present experimental conditions, feeding SB to sows influenced sow and piglet microbiota with no consequences on their health and performance.
Collapse
Affiliation(s)
| | | | | | | | - Sylvie Combes
- INRAE, Université de Toulouse, ENVT, GenPhySE, Castanet Tolosan, France
| | | |
Collapse
|
15
|
Prunier A, Leblanc-Maridor M, Pauwels M, Jaillardon L, Belloc C, Merlot E. Evaluation of the potential benefits of iron supplementation in organic pig farming. OPEN RESEARCH EUROPE 2022; 2:11. [PMID: 37645321 PMCID: PMC10445923 DOI: 10.12688/openreseurope.14367.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 08/31/2023]
Abstract
Background: Iron from the stock acquired during foetal life and the ingestion of milk is not sufficient to cover the needs of the piglets during their first weeks of life. In organic farming, systematic supplementation with iron is problematic due to a strong limitation in pharmaceutic treatments. Methods: Erythroid parameters around weaning were measured in piglets from organic outdoor and indoor farms, and related to indicators of the inflammatory status. Blood samples were collected from 28.9±2.6 piglets/herd at 42.0±3.2 days of age and 11.9±3.0 kg live weight (mean ± SD) in 21 farms from the west part of France. Among the 11 outdoor farms, only one had supplemented piglets with 200 mg iron while among the 10 indoor farms, only one had not supplemented piglets, one had supplemented them with 100 mg, 8 with 200 mg and one with 400 mg. Results: Compared to outdoor piglets without supplementation, piglets kept indoors and receiving 200 mg iron had lower haemoglobin concentration (105 vs 118±2 g/l, mean ± SE) and red blood cell volume (56 vs 60±1 fl) (P<0.005). The reduction in haemoglobin concentration and red blood cell volume was more pronounced in indoor piglets supplemented with 100 mg of iron and even more when they had not received iron. The plasma concentration of haptoglobin was lower in outdoor than in indoor piglets (0.51±0.06 vs 0.78±0.09 g/l) whereas no effect of housing was observed for markers of oxidative stress (dROM, BAP). In the 14 farms where sow parity was known, the haemoglobin concentration was lower in piglets from primiparous than from multiparous sows (109 versus 114±2 g/l, P < 0.001). Conclusion: With the exception of soils where the content of bioavailable iron is very low, piglets from outdoor farms do not require iron supplementation, unlike those raised indoors.
Collapse
Affiliation(s)
| | | | - Maud Pauwels
- PEGASE, Inrae, Institut Agro, Saint-Gilles, 35590, France
- BIOEPAR, Inrae, Oniris, 44307, France
| | | | | | - Elodie Merlot
- PEGASE, Inrae, Institut Agro, Saint-Gilles, 35590, France
| |
Collapse
|
16
|
Mazgaj R, Lipiński P, Szudzik M, Jończy A, Kopeć Z, Stankiewicz AM, Kamyczek M, Swinkels D, Żelazowska B, Starzyński RR. Comparative Evaluation of Sucrosomial Iron and Iron Oxide Nanoparticles as Oral Supplements in Iron Deficiency Anemia in Piglets. Int J Mol Sci 2021; 22:9930. [PMID: 34576090 PMCID: PMC8466487 DOI: 10.3390/ijms22189930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.
Collapse
Affiliation(s)
- Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Adrian M. Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, 43-246 Pawłowice, Poland;
| | - Dorine Swinkels
- Department of Laboratory Medicine (TLM 830), Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands;
- Hepcidin Analysis, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Beata Żelazowska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| |
Collapse
|
17
|
Biodegradable Zinc Oxide Nanoparticles Doped with Iron as Carriers of Exogenous Iron in the Living Organism. Pharmaceuticals (Basel) 2021; 14:ph14090859. [PMID: 34577559 PMCID: PMC8472157 DOI: 10.3390/ph14090859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/14/2023] Open
Abstract
Iron plays an important role in various crucial processes in the body and its deficiency is considered currently as a serious health problem. Thus, iron supplementation strategies for both humans and animals need to be effective and safe. According to our previous studies, zinc-based nanoparticles provide safe, biodegradable, fast and efficient transport system of orally given substances to the tissues. In the current manuscript we present results of a study aimed at investigation of the ZnO nanoparticle-based Fe supplementation system (average size 100 × 250 nm). Nanostructures were orally (gavage) administered to adult mice. Animals were sacrificed at different time points with collection of blood and internal organs for analyses (tissue iron concentration, hepatic level of hepcidin, blood parameters, liver and spleen levels of ferritin, histopathology). Initial experiment was performed to compare the biological effect of doping type (Fe3+ doping vs. a mixture of Fe3+ and Fe2+). Then, the effect of acute/chronic exposure models was determined. The increase in ferritin, along with improved, crucial hematological parameters and lack of the influence on hepcidin expression indicated the chronic application of Fe3+,2+ doped ZnO nanostructures to be the most effective among tested.
Collapse
|
18
|
Anticoi M, Durán E, Avendaño C, Pizarro F, Figueroa J, Guzmán-Pino SA, Valenzuela C. Novel edible toys as iron carrier to prevent iron deficiency of postweaned pigs. Animal 2021; 15:100256. [PMID: 34098521 DOI: 10.1016/j.animal.2021.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
The current preventive treatment for iron deficiency in pigs is inefficient, resulting in a high prevalence of iron-deficient or anemic postweaned pigs. The aim of this study was to develop and characterize edible toys (ETs) to be used as oral iron supplements, and to assess their effect on feeding behavior and iron status of postweaned pigs. Three types of ETs, varying in sweetness, were produced by ionic gelation, using whey, sodium alginate, ferrous sulfate and atomized bovine erythrocytes. ET control (ETC) was developed without sweetener, ET1 contained 15% w/v sucrose and ET2 contained 0.03% w/v of Sucram (98% sodium saccharin, 1% neosperidine dihydrocalcone and 1% maltol). ETs were mainly composed of carbohydrates and protein, with a similar concentration of iron (2.2-2.7 mg/g). The ETs were offered to 24 postweaned pigs to measure acceptability and preference. The animals preferred ETC and ET2 over ET1. To assess the nutritional benefit of the ETs, 24 postweaned pigs were distributed into three groups: ETC (without iron), ETC-Fe (ETC with iron) and ET2-Fe (with iron and Sucram). Iron-loaded ET (ETC-Fe and ET2-Fe) significantly increased the concentration of red blood cells (from 6.1 to 7.5·106 x mm3 for ETC-Fe and from 6.2 to 7.8 for ET2-Fe), hematocrit (from 32.8 to 37.9% for ETC-Fe and from 32.3 to 35.1 for ET2-Fe), serum iron (from 28.6 to 120.6 µmol/L for ETC-Fe and from 34.9 to 145.4 for ET2-Fe) and serum ferritin (from 7.8 to 18.5 µg/L for ETC-Fe and from 8.1 to 20.2 for ET2-Fe). In conclusion, the ETs developed in this study were accepted by the pigs and provided adequate iron to improve the iron status of postweaned pigs.
Collapse
Affiliation(s)
- M Anticoi
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - E Durán
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - C Avendaño
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - F Pizarro
- Laboratorio de Micronutrientes, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 7830490, Chile
| | - J Figueroa
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquín, Santiago 7820436, Chile
| | - S A Guzmán-Pino
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - C Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
| |
Collapse
|
19
|
Innovative oral sucrosomial ferric pyrophosphate-based supplementation rescues suckling piglets from iron deficiency anemia similarly to commonly used parenteral therapy with iron dextran. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Iron deficiency is the most common mammalian nutritional deficiency during the neonatal period. However, among mammalian species neonatal iron deficiency anemia (IDA), the most severe consequence of iron scarcity, occurs regularly in pigs. Although intramuscular supplementation of piglets with high amounts of iron dextran (FeDex) is largely considered an appropriate preventive therapy for IDA prophylaxis, an increasing evidence shows that it negatively affects pig physiology. The aim of our study was to evaluate the efficacy of non-invasive supplementation of piglets with sucrosomial ferric pyrophosphate (SFP), a highly bioavailable dietary iron supplement in preventing IDA, in humans and mice. Results of our study show that SFP given to piglets per os in the amount of 6 mg Fe daily efficiently counteracts IDA at a rate comparable with the traditional FeDex-based supplementation (100 mgFe/kG b.w.; i.m. injection). This was indicated by physiological values of red blood cell indices and plasma iron parameters measured in 28-day old piglets. Moreover, SFP-supplemented piglets showed significantly lower (P ≤0.05) plasma level of 8-isoprostane, a biomarker for oxidative stress compared to FeDex-treated animals, implying lesser toxicity of this order of iron replenishment. Finally, supplementation with SFP does not increase considerably the blood plasma hepcidin, a peptide that acts to inhibit iron absorption from the diet. SFP emerges as a promising nutritional iron supplement, with a high potential to be adopted in the postnatal period.
Collapse
|
20
|
Supplementation with >Your< Iron Syrup Corrects Iron Status in a Mouse Model of Diet-Induced Iron Deficiency. BIOLOGY 2021; 10:biology10050357. [PMID: 33922324 PMCID: PMC8147123 DOI: 10.3390/biology10050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
The objective of this study was to compare the effects of >Your< Iron Syrup, a novel oral liquid iron-containing food supplement, with the commonly prescribed iron sulphate (Fe-sulphate) in a mouse model of diet-induced iron deficiency. Standard inbred BALB/cOlaHsd mice were fed low-iron diet for 11 weeks to induce significant decrease in blood haemoglobin and haematocrit and were then supplemented by gavage with either >Your< Iron Syrup or Fe-sulphate for two weeks. In >Your< Iron Syrup group, several markers of iron deficiency, such as serum iron concentration, transferrin saturation and ferritin level were significantly improved in both female and male mice. Fe-sulphate induced similar responses, except that it did not significantly increase iron serum in females and serum ferritin in both sexes. Fe-sulphate significantly increased liver-iron content which >Your< Iron Syrup did not. Transcription of Hamp and selected inflammatory genes in the liver was comparable between the two supplementation groups and with the Control diet group. Some sex-specific effects were noted, which were more pronounced and less variable in males. In conclusion, >Your< Iron Syrup was efficient, comparable and in some parameters superior to Fe-sulphate in improving iron-related parameters without inducing a response of selected liver inflammation markers in a mouse model of diet-induced iron deficiency.
Collapse
|
21
|
Hao Y, Wang J, Teng D, Wang X, Mao R, Yang N, Ma X. A prospective on multiple biological activities of lactoferrin contributing to piglet welfare. Biochem Cell Biol 2021; 99:66-72. [DOI: 10.1139/bcb-2020-0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Piglets, especially weaning piglets, show a lower level of immunity and higher morbidity and mortality, owing to their rapid growth, physiological immaturity, and gradual reduction of maternal antibodies, which seriously affects their growth and thus, value. It is important that piglets adapt to nutrient digestion and absorption and develop sound intestinal function and colonization with gut microbiota as soon as possible during their early life stage. Lactoferrin is a natural glycoprotein polypeptide that is part of the transferrin family. It is widely found in mucosal secretions such as saliva and tears, and most highly in milk and colostrum. As a multifunctional bioactive protein and a recommended food additive, lactoferrin is a potential alternative therapy to antibiotics and health promoting additive for piglet nutrition and development. It is expected that lactoferrin, as a natural food additive, could play an important role in maintaining pig health and development. This review examines the following known beneficial effects of lactoferrin: improves the digestion and capacity for absorption in the intestinal tract; promotes the absorption of iron and reduces the incidence of iron deficiency anemia; regulates intestinal function and helps to balance the microbial biota; and enhances the resistance to disease of the piglets via modulating and enhancing the immune system.
Collapse
Affiliation(s)
- Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| |
Collapse
|
22
|
Jakobsen N, Pedersen MLM, Amdi C. Peroral iron supplementation can be provided to piglets through a milk cup system with results comparable to parenteral iron administration. Transl Anim Sci 2021; 5:txab004. [PMID: 33604520 PMCID: PMC7881258 DOI: 10.1093/tas/txab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/09/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate if iron can be allocated to piglets through sow milk replacer fed in a milk cup system with efficacies comparable to intramuscular (IM) administration of 200 mg gleptoferron. Two hundred and ninety-four piglets from 21 litters were allocated to three different iron treatments (n = 98). The treatments were 1) Control (CON) provided no supplemental iron, 2) Injected iron (II) provided 200 mg gleptoferron IM on day 3 postpartum, and 3) Milk iron (MI) provided sow milk replacer “DanMilk Supreme” added 1 % “Piglet Boozt” ad libitum from day 0 until 21 days postpartum. All piglets had access to dry feed from day 6. Initial and final body weight was registered and hemoglobin (Hb) levels were analyzed on day 0, 3, 7, 10, 17, and 21 after farrowing. In order to correlate drinking pattern with Hb level and growth, video cameras were installed, and drinking pattern was recorded on day 18 postpartum. A blood sample was drawn from piglets from three litters per treatment on day 21 for a complete hematology profile. The results showed that iron treatment had an effect on Hb levels (P < 0.001) that were different between all groups from day 10, resulting in a mean Hb level of 76.2 g/L (CON), 120.9 g/L (II), and 105.4 g/L (MI) on day 21. The mean Hb level for both MI and II was above the anemia threshold of 90 g/L and the Hb level of the II group was above 110 g/L and the piglets thus defined as normal. Treatment had a significant effect on Hb, hematocrit (hct), mean corposcular volume (MCV), mean corpuscular hemoglobin (MCH), red blood cell distribution width (RDW), lymphocytes (%), neutrophils (bill/L) (P < 0.05), neutrophils (%) (P < 0.01), with CON being significantly different from MI and II that were similar or tended to differ. Total visits at the cup was not correlated to Hb level (r = 0.08) and growth was not affected by treatment (P = 0.99). It is concluded that iron can be supplemented to piglets through a milk cup system with efficacies comparable to parenteral administration of 200 mg gleptoferron.
Collapse
Affiliation(s)
- Nadia Jakobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Charlotte Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
23
|
Jończy A, Mazgaj R, Starzyński RR, Poznański P, Szudzik M, Smuda E, Kamyczek M, Lipiński P. Relationship between Down-Regulation of Copper-Related Genes and Decreased Ferroportin Protein Level in the Duodenum of Iron-Deficient Piglets. Nutrients 2020; 13:nu13010104. [PMID: 33396831 PMCID: PMC7823587 DOI: 10.3390/nu13010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, 2 × 1012 red blood cells (RBCs) are produced every day in the bone marrow to ensure a constant supply of iron to maintain effective erythropoiesis. Impaired iron absorption in the duodenum and inefficient iron reutilization from senescent RBCs by macrophages contribute to the development of anemia. Ferroportin (Fpn), the only known cellular iron exporter, as well as hephaestin (Heph) and ceruloplasmin, two copper-dependent ferroxidases involved in the above-mentioned processes, are key elements of the interaction between copper and iron metabolisms. Crosslinks between these metals have been known for many years, but metabolic effects of one on the other have not been elucidated to date. Neonatal iron deficiency anemia in piglets provides an interesting model for studying this interplay. In duodenal enterocytes of young anemic piglets, we identified iron deposits and demonstrated increased expression of ferritin with a concomitant decline in both Fpn and Heph expression. We postulated that the underlying mechanism involves changes in copper distribution within enterocytes as a result of decreased expression of the copper transporter—Atp7b. Obtained results strongly suggest that regulation of iron absorption within enterocytes is based on the interaction between proteins of copper and iron metabolisms and outcompetes systemic regulation.
Collapse
Affiliation(s)
- Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
- Correspondence: (A.J.); (P.L.); Tel.: +48-227-367-058 (A.J.); +48-227-367-046 (P.L.)
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland;
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Ewa Smuda
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, 64-122 Pawłowice, Poland;
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
- Correspondence: (A.J.); (P.L.); Tel.: +48-227-367-058 (A.J.); +48-227-367-046 (P.L.)
| |
Collapse
|
24
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
25
|
Zhou J, Dong Z, Wan D, Wang Q, Haung J, Huang P, Li Y, Ding X, Li J, Yang H, Yin Y. Effects of iron on intestinal development and epithelial maturation of suckling piglets. J Anim Sci 2020; 98:5881353. [PMID: 32756964 DOI: 10.1093/jas/skaa213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to discover the effects of iron on the intestinal development and epithelial maturation of suckling piglets. Twenty-seven newborn male piglets from 9 sows (3 piglets per sow), with similar body weight, were selected. The 3 piglets from the same sow were randomly divided into 1 of the 3 groups. The piglets were orally administrated with 2 mL of normal saline (CON group) or with 25 mg of iron by ferrous sulfate (OAFe group; dissolved in normal saline) on the 2nd, 7th, 12th, and 17th day, respectively, or intramuscularly injected with 100 mg of iron by iron dextran (IMFe group) on the 2nd day. The slaughter was performed on the 21st day and intestinal samples were collected. Compared with the CON group, iron supplementation significantly increased the length (P < 0.001), weight (P < 0.001), relative weight (P < 0.001), and the length:weight ratio (P < 0.001) of the small intestine in both OAFe and IMFe groups. The villus height (P < 0.001), crypt depth (CD) (P < 0.001), villus width (P = 0.002), and surface area (P < 0.001) in the jejunum of IMFe and OAFe piglets were also greater than those in CON piglets. The mRNA expression of trehalase (Treh; P = 0.002) and sucrase isomaltase (Sis; P = 0.043), markers of epithelial maturation, increased in OAFe and IMFe piglets, respectively. Moreover, enterocyte vacuolization, observed in fetal-type enterocyte, was reduced in OAFe and IMFe piglets, compared with CON piglets. However, no significant difference in the expression of the target genes of wnt/β-catenin signaling pathway was observed. The results indicated that both oral administration and intramuscular injection with iron promoted intestinal development and epithelial maturation in suckling piglets and that the effects of iron may be independent of wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jing Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhenglin Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Haung
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xueqin Ding
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
26
|
Dukhnitsky VB, Derkach IM, Plutenko MO, Fritsky IO, Derkach SS. Antianemic action of the iron (IV) clathrochelate complexes. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Anemia is one of the most common non-contagious diseases of pigs. Modern antianemic drugs have several drawbacks, so finding new drugs is a pressing issue. We previously reported the results of preclinical studies of iron in rare high valence IV. This allowed us to determine, supplement, and generalize the data on clinical studies of the new drugs with the active substance iron (IV) clathrochelate. Therefore, we studied its antianemic effect on piglets. Experiments were carried out on piglets-analogues neonates, which were divided into three groups: control and two experimental groups. Piglets were kept with sows on suckling. For the purpose of prevention of iron deficiency anemia, the traditional solution of iron dextran was administered once intramuscularly to piglets of I control group. The aqueous solution of iron (IV) clathrochelate complexes was administered once intramuscularly to piglets of II experimental group. Iron (IV) clathrochelate complexes were dissolved in a solvent of rheopolyglucin and administered once intramuscularly to piglets of III experimental group. 1 mL of test solutions contained 100 mg of active substance. The investigative material were the samples of blood and serum of piglets, their liver and spleen. The experiment lasted during a 30-day period since the birth of the piglets. According to the results of the experiments, iron (IV) clatrochelate complexes which were dissolved in water for injection and rheopolyglucin had higher antianemic activity compared to the control. This is evidenced by the dynamics of probable changes in the number of erythrocytes, hemoglobin content and hematocrit, iron content in serum and its mass fraction in the blood, liver and spleen of piglets. The effectiveness of the action of iron (IV) clatrochelate complexes is demonstrated by the full supply of piglets with iron and its higher bioavailability.
Collapse
|
27
|
Szudzik M, Lipiński P, Jończy A, Mazgaj R, Pieszka M, Kamyczek M, Smuda E, Starzyński RR. Long-term Effect of Split Iron Dextran/Hemoglobin Supplementation on Erythrocyte and Iron Status, Growth Performance, Carcass Parameters, and Meat Quality of Polish Large White and 990 Line Pigs. Biol Trace Elem Res 2020; 196:472-480. [PMID: 31701465 PMCID: PMC7306016 DOI: 10.1007/s12011-019-01950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Heme is an efficient dietary iron supplement applied in humans and animals to prevent iron deficiency anemia (IDA). We have recently reported that the use of bovine hemoglobin as a dietary source of heme iron efficiently counteracts the development of IDA in young piglets, which is the common problem in pig industry. Here, we used maternal Polish Large White and terminal sire breed (L990) pigs differing in traits for meat production to evaluate the long-term effect of split supplementation with intramuscularly administered small amount of iron dextran and orally given hemoglobin on hematological indices, iron status, growth performance, slaughter traits, and meat quality at the end of fattening. Results of our study show that in pigs of both breeds split supplementation was effective in maintaining physiological values of RBC and blood plasma iron parameters as well as growth performance, carcass parameters, and meat quality traits. Our results prove the effectiveness of split iron supplementation of piglets in a far-reach perspective.
Collapse
Affiliation(s)
- Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Breeding PAS, ul. Postępu 36a, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding PAS, ul. Postępu 36a, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding PAS, ul. Postępu 36a, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Breeding PAS, ul. Postępu 36a, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Marek Pieszka
- Department of Animal Nutrition & Feed Science, National Research Institute of Animal Production, Kraków, Poland
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, Pawłowice, Poland
| | - Ewa Smuda
- Department of Molecular Biology, Institute of Genetics and Animal Breeding PAS, ul. Postępu 36a, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding PAS, ul. Postępu 36a, 05-552, Magdalenka, Jastrzębiec, Poland.
| |
Collapse
|
28
|
Mazgaj R, Szudzik M, Lipiński P, Jończy A, Smuda E, Kamyczek M, Cieślak B, Swinkels D, Lenartowicz M, Starzyński RR. Effect of Oral Supplementation of Healthy Pregnant Sows with Sucrosomial Ferric Pyrophosphate on Maternal Iron Status and Hepatic Iron Stores in Newborn Piglets. Animals (Basel) 2020; 10:ani10071113. [PMID: 32610535 PMCID: PMC7401508 DOI: 10.3390/ani10071113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In most mammals, including humans, the need for iron increases rapidly in the last period of pregnancy. Therefore, in compliance with World Health Organization (WHO) recommendations, iron supplementation has become a standard procedure even in healthy pregnant women although it carries the risk of iron toxicity and dysregulation of systemic iron homeostasis. Due to physiological and genomic similarities between swine and humans, pigs constitute an useful animal model in nutritional studies during pregnancy. Here, healthy pregnant sows were supplemented with sucrosomial ferric pyrophosphate (SFP), a new non-heme iron formulation, to study its effect on their iron metabolism and that of their progeny. In particular, we aimed at verifying whether supplementation of pregnant sows with SFP will increase the level of low hepatic iron stores in newborn piglets. Results of our study show that SFP does not significantly alter neither systemic iron homeostasis in pregnant sows, nor hepatic iron stores in newborn piglets, which can be used during neonatal period for the maintenance of hematological status. We hypothesize that supplemental iron given orally to pregnant sows is poorly transferred across the placenta. Abstract Background: The similarities between swine and humans in physiological and genomic patterns, as well as significant correlation in size and anatomy, make pigs an useful animal model in nutritional studies during pregnancy. In humans and pigs iron needs exponentially increase during the last trimester of pregnancy, mainly due to increased red blood cell mass. Insufficient iron supply during gestation may be responsible for the occurrence of maternal iron deficiency anemia and decreased iron status in neonates. On the other hand, preventive iron supplementation of non-anemic mothers may be of potential risk due to iron toxicity. Several different regimens of iron supplementation have been applied during pregnancy. The majority of oral iron supplementations routinely applied to pregnant sows provide inorganic, non-heme iron compounds, which exhibit low bioavailability and intestinal side effects. The aim of this study was to check, using pig as an animal model, the effect of sucrosomial ferric pyrophosphate (SFP), a new non-heme iron formulation on maternal and neonate iron and hematological status, placental transport and pregnancy outcome; Methods: Fifteen non-anemic pregnant sows were recruited to the experiment at day 80 of pregnancy and randomized into the non-supplemented group (control; n = 5) and two groups receiving oral iron supplementation—sows given sucrosomial ferric pyrophosphate, 60 mg Fe/day (SFP; n = 5) (SiderAL®, Pisa, Italy) and sows given ferrous sulfate 60 mg Fe/day (Gambit, Kutno, Poland) (FeSO4; n = 5) up to delivery (around day 117). Biological samples were collected from maternal and piglet blood, placenta and piglet tissues. In addition, data on pregnancy outcome were recorded.; Results: Results of our study show that both iron supplements do not alter neither systemic iron homeostasis in pregnant sows nor their hematological status at the end of pregnancy. Moreover, we did not detect any changes of iron content in the milk and colostrum of iron supplemented sows in comparison to controls. Neonatal iron status of piglets from iron supplemented sows was not improved compared with the progeny of control females. No statistically significant differences were found in average piglets weight and number of piglets per litter between animals from experimental groups. The placental expression of iron transporters varied depending on the iron supplement.
Collapse
Affiliation(s)
- Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (E.S.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (E.S.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (E.S.)
- Correspondence: (P.L.); (R.R.S.); Tel.: +48-227367046 (P.L.); +48-227367054 (R.R.S.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (E.S.)
| | - Ewa Smuda
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (E.S.)
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, Pawłowice 64-122, Poland;
| | | | - Dorine Swinkels
- Department of Laboratory Medicine (TLM 830), Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands;
- Hepcidin Analysis, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland;
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (E.S.)
- Correspondence: (P.L.); (R.R.S.); Tel.: +48-227367046 (P.L.); +48-227367054 (R.R.S.)
| |
Collapse
|
29
|
Rajamanickam K, Leela V, Suganya G, Basha SH, Parthiban M, Pazhanivel N, Mangala Gowri A. Expression of iron regulatory proteins in full-term swine placenta. Reprod Domest Anim 2020; 55:931-942. [PMID: 32449967 DOI: 10.1111/rda.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 11/29/2022]
Abstract
In swine, even though the pregnant sows were with iron abundance, the inborn iron reserve of piglets was compromised. This indicates the insufficiency of molecular machinery involved in local placental iron flux. Here, we investigated the expression of iron regulatory proteins like hepcidin and ferroportin and also their association with iron reserve, inflammation and oxidative stress in placenta of full-term pregnant sows (n = 6). Amplification and sequencing of placental DNA confirmed the presence of hepcidin (MN579557) and ferroportin (MN565887) sequences and their 100% identity with existing GenBank data. Real-time amplification of placental mRNA revealed significant higher expression of hepcidin (p < .05) than ferroportin. Western blot analysis of placental tissues revealed specific bands for both hepcidin (~8 kDa) and ferroportin (~62 kDa) molecules. Immunohistochemistry revealed the immunoreactivity for both proteins in the cytoplasm and membrane of trophoblastic cells of the placenta. Hepcidin and ferroportin expressions were positively associated with placental non-haem iron reserve (p < .0001; p = .033), lipid peroxidation (p = .0060; p < .0001) and reactive oxygen species level (p = .0092; p = .0292). Hepcidin expression was positively associated with interleukin - 6 (p = .0002) and interferon gamma (p < .0001) expressions but ferroportin expression was negatively associated with interleukin-6 (p = .0005), interleukin-1β (p = .0226) and interferon gamma (p = .0059) expressions. This indicates hepcidin and ferroportin may have a role in controlling the local placental iron flux by acting as a molecular bridge between iron trafficking and inflammation.
Collapse
Affiliation(s)
- Kandasamy Rajamanickam
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Venkatasubramanian Leela
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Gopalakrishnan Suganya
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Sabiha Hayath Basha
- Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Manoharan Parthiban
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Natesan Pazhanivel
- Department of Veterinary Pathology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Angappan Mangala Gowri
- Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
30
|
Chen X, Zhang X, Zhao J, Tang X, Wang F, Du H. Split iron supplementation is beneficial for newborn piglets. Biomed Pharmacother 2019; 120:109479. [PMID: 31557572 DOI: 10.1016/j.biopha.2019.109479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Iron deficiency is the most common nutritional deficiency disorder in early postnatal period, which often manifesting into clinical complications. Therefore, iron supplementation is necessary to avoid iron deficiency anemia in the neonatal period. However, how to supplement iron effectively is a big problem. Thus, using newborn piglets as a model for iron deficiency, we compared the effects of routinely used protocol by intramuscular injection of high amount of iron dextran and a modified strategy by split iron supplementation with reduced amounts of iron. The results showed that split iron supplementation efficiently improved hematological status of piglets and attenuated the induction of hepcidin expression, which resulted in the recovery of piglets from iron deficiency and the increase of iron utilization. Compared with piglets received large amounts of iron dextran, low dose supplementation of iron improved the growth performance and duodenum development by increasing the villus height and crypt depth and enhancing microvilli morphology. Furthermore, split iron supplementation minimized the potential toxicity of the administered iron due to the oxidative stress and hepatocyte autophagy. Overall, the present study demonstrated that split supplementation with reduced amount of iron dextran not only protected newborn piglets from iron deficiency but also eliminated potential toxicity. It suggested that besides combating anemia, possible negative effects of excessive iron on oxidative stress, which is especially important for infant development, should be considered.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Zhao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xueyou Tang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Markova V, Holm C, Pinborg AB, Thomsen LL, Moos T. Impairment of the Developing Human Brain in Iron Deficiency: Correlations to Findings in Experimental Animals and Prospects for Early Intervention Therapy. Pharmaceuticals (Basel) 2019; 12:ph12030120. [PMID: 31416268 PMCID: PMC6789712 DOI: 10.3390/ph12030120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Due to the necessity of iron for a variety of cellular functions, the developing mammalian organism is vulnerable to iron deficiency, hence causing structural abnormalities and physiological malfunctioning in organs, which are particularly dependent on adequate iron stores, such as the brain. In early embryonic life, iron is already needed for proper development of the brain with the proliferation, migration, and differentiation of neuro-progenitor cells. This is underpinned by the widespread expression of transferrin receptors in the developing brain, which, in later life, is restricted to cells of the blood–brain and blood–cerebrospinal fluid barriers and neuronal cells, hence ensuring a sustained iron supply to the brain, even in the fully developed brain. In embryonic human life, iron deficiency is thought to result in a lower brain weight, with the impaired formation of myelin. Studies of fully developed infants that have experienced iron deficiency during development reveal the chronic and irreversible impairment of cognitive, memory, and motor skills, indicating widespread effects on the human brain. This review highlights the major findings of recent decades on the effects of gestational and lactational iron deficiency on the developing human brain. The findings are correlated to findings of experimental animals ranging from rodents to domestic pigs and non-human primates. The results point towards significant effects of iron deficiency on the developing brain. Evidence would be stronger with more studies addressing the human brain in real-time and the development of blood biomarkers of cerebral disturbance in iron deficiency. Cerebral iron deficiency is expected to be curable with iron substitution therapy, as the brain, privileged by the cerebral vascular transferrin receptor expression, is expected to facilitate iron extraction from the circulation and enable transport further into the brain.
Collapse
Affiliation(s)
- Veronika Markova
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Pharmacosmos A/S, 4300 Holbæk, Denmark
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Charlotte Holm
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Anja Bisgaard Pinborg
- Fertility Clinic, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lars Lykke Thomsen
- Pharmacosmos A/S, 4300 Holbæk, Denmark
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
32
|
Correction: Mateusz, S., et al. Iron Supplementation in Suckling Piglets: An Ostensibly Easy Therapy of Neonatal Iron Deficiency Anemia. Pharmaceuticals 2018, 11, 128. Pharmaceuticals (Basel) 2019; 12:ph12010022. [PMID: 30699979 PMCID: PMC6469289 DOI: 10.3390/ph12010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
The authors wish to make the following corrections to this paper [¹]: the term "liposomal" should be replaced with the term "sucrosomial" in the following places [...].
Collapse
|