1
|
Kirkova D, Stremski Y, Bachvarova M, Todorova M, Goranov B, Statkova-Abeghe S, Docheva M. New Benzothiazole-Monoterpenoid Hybrids as Multifunctional Molecules with Potential Applications in Cosmetics. Molecules 2025; 30:636. [PMID: 39942740 PMCID: PMC11820011 DOI: 10.3390/molecules30030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35-80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for the development of biologically active compounds. New benzothiazole-monoterpenoid hybrids were synthesized through a regioselective α-amidoalkylation reaction of thymol and carvacrol with high yields (70-96%). This approach is both simple and cost-effective, employing easily accessible and inexpensive reagents to produce target molecules. The structure of the synthesized compounds was characterized spectrally using 1H-, 13C-NMR, FT-IR, and HRMS data. The newly obtained compounds are structural analogues of the UVB filter PBSA, which is used in cosmetics. The spectral properties of the aromatic products thymol hybrid (2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole) and carvacrol hybrid (2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole) were successfully examined, using a validated spectrophotometric method. SPF values varied from 31 to 36, compared to the PBSA (30), and were observed at concentrations of 1-0.25 mM. 2-Hydroxyphenylbenzothiazoles are known antimicrobial and antioxidant agents that have potential applications in the food industry and cosmetics as preservatives and antioxidants. In this context, antimicrobial activity of the hybrid compounds was evaluated using the agar diffusion method against E. coli, S. aureus, P. aeruginosa, and C. albicans. Compounds of methyl-2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate containing carvacrol fragments showed high activity against Staphylococcus aureus ATCC 25923 (with 0.044 μmol content). The radical scavenging activity was determined using ABTS and DPPH assays, the highest activity was exhibited by the thymol hybrids ethyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50-133.70 ± 10 µM) and methyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50-157.50 ± 10 µM), defined by ABTS. The aromatic benzothiazole-monoterpenoid hybrids are classified using in silico analyses as non-mutagenic, with low toxicity, and they are non-irritating to the skin. These compounds were identified as new hit scaffolds for multifunctional molecules in cosmetics.
Collapse
Affiliation(s)
- Desislava Kirkova
- Agricultural Academy, Tobacco and Tobacco Products Institute, 4108 Markovo, Bulgaria; (D.K.); (M.D.)
| | - Yordan Stremski
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Maria Bachvarova
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Mina Todorova
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Bogdan Goranov
- Department of Microbiology and Biotechnology, University of Food Technologies, 26 Maritza Boulevard, 4002 Plovdiv, Bulgaria;
| | - Stela Statkova-Abeghe
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Margarita Docheva
- Agricultural Academy, Tobacco and Tobacco Products Institute, 4108 Markovo, Bulgaria; (D.K.); (M.D.)
| |
Collapse
|
2
|
Bertašiūtė M, Kavaliauskas P, Vaickelionienė R, Grybaitė B, Petraitis V, Petraitienė R, Naing E, Garcia A, Šiugždaitė J, Lelešius R, Mickevičius V. Synthesis of 1-(2-Hydroxyphenyl)- and (3,5-Dichloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as Promising Scaffolds for the Development of Novel Antimicrobial and Anticancer Agents. Int J Mol Sci 2023; 24:ijms24097966. [PMID: 37175673 PMCID: PMC10178429 DOI: 10.3390/ijms24097966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing antimicrobial resistance among Gram-positive pathogens and pathogenic fungi remains one of the major public healthcare threats. Therefore, novel antimicrobial candidates and scaffolds are critically needed to overcome resistance in Gram-positive pathogens and drug-resistant fungal pathogens. In this study, we explored 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid and its 3,5-dichloro-2-hydroxyphenyl analogue for their in vitro antimicrobial activity against multidrug-resistant pathogens. The compounds showed structure-dependent antimicrobial activity against Gram-positive pathogens (S. aureus, E. faecalis, C. difficile). Compounds 14 and 24b showed promising activity against vancomycin-intermediate S. aureus strains, and favorable cytotoxic profiles in HSAEC-1 cells, making them attractive scaffolds for further development. 5-Fluorobenzimidazole, having a 3,5-dichloro-2-hydroxyphenyl substituent, was found to be four-fold, and hydrazone, with a thien-2-yl fragment, was two-fold stronger than clindamycin against methicillin resistant S. aureus TCH 1516. Moreover, hydrazone, bearing a 5-nitrothien-2-yl moiety, showed promising activity against three tested multidrug-resistant C. auris isolates representing major genetic lineages (MIC 16 µg/mL) and azole-resistant A. fumigatus strains harboring TR34/L98H mutations in the CYP51A gene. The anticancer activity characterization demonstrated that the 5-fluorobenzimidazole derivative with a 3,5-dichloro-2-hydroxyphenyl substituent showed the highest anticancer activity in an A549 human pulmonary cancer cell culture model. Collectively these results demonstrate that 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives could be further explored for the development of novel candidates targeting Gram-positive pathogens and drug-resistant fungi.
Collapse
Affiliation(s)
- Monika Bertašiūtė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland Baltimore School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Jūratė Šiugždaitė
- Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Raimundas Lelešius
- Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| |
Collapse
|
3
|
Design, Synthesis and Evaluation of New Multifunctional Benzothiazoles as Photoprotective, Antioxidant and Antiproliferative Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010287. [PMID: 36615480 PMCID: PMC9822352 DOI: 10.3390/molecules28010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
A current trend of research in the health field is toward the discovery of multifunctional compounds, capable of interacting with multiple biological targets, thus simplifying multidrug therapies and improving patient compliance. The aim of this work was to synthesize new multifunctional chemical entities bearing a benzothiazole nucleus, a structure that has attracted increasing interest for the great variety of biological actions that it can perform, and already used as a scaffold in several multifunctional drugs. Compounds are reported, divided into two distinct series, synthetized and tested in vitro for the antioxidant, and include UV-filtering and antitumor activities. DPPH and FRAP tests were chosen to outline an antioxidant activity profile against different radical species. The UV-filtering activity was investigated, pre- and post-irradiation, through evaluation of a O/W sunscreen standard formulation containing 3% of the synthetic compounds. The antitumor activity was investigated both on human melanoma cells (Colo-38) and on immortalized human keratinocytes as a control (HaCat). A good antiproliferative profile in terms of IC50 was chosen as a mandatory condition to further investigate apoptosis induction as a possible cytotoxicity mechanism through the Annexin V test. Compound BZTcin4 was endowed with excellent activity and a selectivity profile towards Colo-38, supported by a good antioxidant capacity and an excellent broad-spectrum photoprotective profile.
Collapse
|
4
|
Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010091. [PMID: 36615285 PMCID: PMC9822402 DOI: 10.3390/molecules28010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.
Collapse
|
5
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
6
|
Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety. Symmetry (Basel) 2022. [DOI: 10.3390/sym14112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydrazones are regarded as a distinctive category of organic compounds because of their tremendous characteristics and potential uses in analytical, chemical, and medicinal chemistry. In the present study, a new series of Hydrazone Derivatives bearing cis-(4-chlorostyryl) amide moiety were designed and synthesized. In vitro cytotoxicity screening showed that compounds 3i, 3l, 3m, and 3n revealed potent anticancer activity against MCF-7 cancer cell line with IC50 values between 2.19–4.37 μM compared with Staurosporin as a reference compound. The antiproliferative activity of these compounds appears to be correlated well with their ability to inhibit the VEGFR-2 kinase enzyme. Activation of the damage response pathway leads to cellular cycle arrest at the G1 phase. Fluorochrome Annexin V/PI staining indicated that cell death proceeds through the apoptotic pathway mechanism. The mechanistic pathway was confirmed by a significant increase in the level of active caspase 9 compared with control untreated MCF-7 cells.
Collapse
|
7
|
Synthesis, spectroscopic (13C/1H-NMR, FT-IR) investigations, quantum chemical modelling (FMO, MEP, NBO analysis), and antioxidant activity of the bis-benzimidazole molecule. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
9
|
Djuidje EN, Barbari R, Baldisserotto A, Durini E, Sciabica S, Balzarini J, Liekens S, Vertuani S, Manfredini S. Benzothiazole Derivatives as Multifunctional Antioxidant Agents for Skin Damage: Structure–Activity Relationship of a Scaffold Bearing a Five-Membered Ring System. Antioxidants (Basel) 2022; 11:antiox11020407. [PMID: 35204288 PMCID: PMC8869097 DOI: 10.3390/antiox11020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Skin diseases often give multifactorial damages; therefore, the development of multifunctional compounds represents a suitable approach especially against disorders that are induced by oxidative stress. Thus, taking into account the successful results we achieved on benzimidazoles, we have devised a new series of isosteric benzothiazoles and investigated their antioxidant, photoprotective, antifungal and antiproliferative activity. Particular attention has been paid to synergistic antioxidant and photoprotective properties. For compounds 9a and 10a, a multifunctional profile was outlined, supported by an excellent filtering capacity, mainly UVB, which has higher capacities than those of the reference PBSA which is currently in the market as a UV sunscreen filter. The two compounds were also the best in terms of growth inhibition of dermatophytes and Candida albicans, and 10a also showed good antioxidant activity. Furthermore, 9a was also effective on melanoma tumor cells (SK-Mel 5), making these compounds good candidates in the development of new skin protective and preventive agents.
Collapse
Affiliation(s)
- Ernestine Nicaise Djuidje
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Riccardo Barbari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy;
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
- Correspondence: (A.B.); (S.V.); Tel.: +39-0532-455258 (A.B.); +39-0532-455294 (S.V.)
| | - Elisa Durini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Sabrina Sciabica
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, University of Leuven, B-3000 Leuven, Belgium; (J.B.); (S.L.)
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, University of Leuven, B-3000 Leuven, Belgium; (J.B.); (S.L.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
- Correspondence: (A.B.); (S.V.); Tel.: +39-0532-455258 (A.B.); +39-0532-455294 (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| |
Collapse
|
10
|
Chugunova E, Akylbekov N, Dobrynin A, Burilov A, Boga C, Micheletti G, Frenna V, Mattioli EJ, Calvaresi M, Spinelli D. 4,6-Dichloro-5-Nitrobenzofuroxan: Different Polymorphisms and DFT Investigation of Its Reactivity with Nucleophiles. Int J Mol Sci 2021; 22:13460. [PMID: 34948257 PMCID: PMC8709177 DOI: 10.3390/ijms222413460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
This research focuses on the X-ray structure of 4,6-dichloro-5-nitrobenzofuroxan 1 and of some of its amino derivatives (4a, 4e, 4g, and 4l) and on DFT calculations concerning the nucleophilic reactivity of 1. We have found that by changing the solvent used for crystallization, it is possible to obtain 4,6-dichloro-5-nitrobenzofuroxan (1) in different polymorphic structures. Moreover, the different torsional angles observed for the nitro group in 1 and in its amino derivatives (4a, 4e, 4g, and 4l) are strictly dependent on the steric hindrance of the substituent at C-4. DFT calculations on the course of the nucleophilic substitution confirm the role of the condensed furoxan ring in altering the aromaticity of the carbocyclic frame, while chlorine atoms strongly influence the dihedral angle and the rotational barrier of the nitro group. These results corroborate previous observations based on experimental kinetic data and give a deep picture of the reaction with amines, which proceeds via a "non-aromatic" nucleophilic substitution.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov st. 8, 420088 Kazan, Russia; (A.D.); (A.B.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo st. 2/31, 420111 Kazan, Russia
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov st. 8, 420088 Kazan, Russia; (A.D.); (A.B.)
- Institute of Radio Electronics, Photonics and Digital Technologies, Kazan National Research Technical University, 10 Karl Marx Str., 420111 Kazan, Russia
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov st. 8, 420088 Kazan, Russia; (A.D.); (A.B.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo st. 2/31, 420111 Kazan, Russia
| | - Carla Boga
- Department of Industrial Chemistry ‘Toso Montanari’ ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| | - Gabriele Micheletti
- Department of Industrial Chemistry ‘Toso Montanari’ ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| | - Vincenzo Frenna
- Department STEBICEF, University of Palermo, Ed.17, Viale delle Scienze, 90128 Palermo, Italy;
| | - Edoardo Jun Mattioli
- Department of Chemistry ‘G. Ciamician’ ALMA MATER STUDIORUM, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy; (E.J.M.); (M.C.)
| | - Matteo Calvaresi
- Department of Chemistry ‘G. Ciamician’ ALMA MATER STUDIORUM, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy; (E.J.M.); (M.C.)
| | - Domenico Spinelli
- Department of Chemistry ‘G. Ciamician’ ALMA MATER STUDIORUM, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy; (E.J.M.); (M.C.)
| |
Collapse
|
11
|
Argirova MA, Georgieva MK, Hristova-Avakumova NG, Vuchev DI, Popova-Daskalova GV, Anichina KK, Yancheva DY. New 1 H-benzimidazole-2-yl hydrazones with combined antiparasitic and antioxidant activity. RSC Adv 2021; 11:39848-39868. [PMID: 35494105 PMCID: PMC9044521 DOI: 10.1039/d1ra07419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022] Open
Abstract
Parasitic infections, caused mainly by the species Trichinella spiralis (T. spiralis), are widespread around the world and lead to morbidity and mortality in the population. Meanwhile, some studies have showed that these parasites induce oxidative stress in the infected host. With the aim of developing a class of compounds combining anthelmintic with antioxidant properties, a series of new benzimidazolyl-2-hydrazones 5a-l, bearing hydroxyl- and methoxy-groups, were synthesized. The anthelmintic activity on encapsulated T. spiralis was studied in vitro thus indicating that all hydrazones were more active than the clinically used anthelmintic drugs albendazole and ivermectin. 5b and 5d killed the total parasitic larvae (100% effectiveness) after 24 hours incubation period at 37 °C in both concentrations (50 and 100 μg ml−1). The antioxidant activity of the target compounds was elucidated in vitro against stable free radicals DPPH and ABTS as well as iron induced oxidative damage in model systems containing biologically relevant molecules lecithin and deoxyribose. The two 2,3- and 3,4-dihydroxy hydrazones 5b and 5d were the most effective radical scavengers in all studied systems. DFT calculations were applied to calculate the reaction enthalpies in polar and nonpolar medium and estimate the preferred mechanism of antioxidant activity. The relative radical scavenging ability of compounds 5a-l showed a good correlation to the experimentally observed trends. It was found that the studied compounds are capable to react with various free radicals – ˙OCH3, ˙OOH and ˙OOCH3, through several possible reaction pathways – HAT in nonpolar medium, SPLET in polar medium and RAF in both media. The design of new drug candidates that combine anthelmintic and antioxidant actions in one molecule offers a beneficial approach in the treatment of the tissue damages, immune system dysfunction and oxidative stress caused by trichinellosis.![]()
Collapse
Affiliation(s)
- Maria A. Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia, Bulgaria
| | - Miglena K. Georgieva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nadya G. Hristova-Avakumova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
| | - Dimitar I. Vuchev
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University, Plovdiv, Bulgaria
| | - Galya V. Popova-Daskalova
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University, Plovdiv, Bulgaria
| | - Kameliya K. Anichina
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Denitsa Y. Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia, Bulgaria
| |
Collapse
|