1
|
de Souza I, Grimmelprez GCP, Yamaguchi KKL, Schleusener J, Lohan SB, Meinke MC, Gaspar LR. Evaluation of Residues of Amazonian Fruit Piquia ( Caryocar villosum) as Sustainable Ingredient for Sunscreen and Cosmetic Formulations. Antioxidants (Basel) 2025; 14:122. [PMID: 40002309 PMCID: PMC11852122 DOI: 10.3390/antiox14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Amazonian fruit residues like piquia shells are often discarded despite their antioxidant potential for sustainable cosmetic use. This study evaluated the photostability, phototoxicity, and photoprotection of hydroalcoholic piquia shell extract (PqSE) combined with UV filters in solutions and cosmetic formulations. PqSE formulations were photostable, even stabilizing photounstable UV filters. Phototoxicity tests (OECD TG 432) showed no phototoxic potential (MPE < 0.15) and reduction in the phototoxic potential of UV filters, while ocular irritation potential via HET-CAM assay indicated no irritant effects. The extract combined with UV filters enhanced protection against UVA-induced reactive oxygen species (ROS) production, achieving 60.9% effectiveness, outperforming commercial photostabilizers. Against UVB radiation, it showed cellular viability above 80%, comparable to benzophenone-3. PqSE formulations exhibited a radical protection factor (RPF) nine times higher than controls and reduced radical production by 64% after visible/near-infrared (VIS/NIR) irradiation on porcine skin, compared to 38% for controls. Confocal Raman microspectroscopy showed penetration depths below 12 µm for all time points. This study highlights the potential of reusing fruit residues like PqSE as sustainable, effective ingredients in sunscreen formulations, offering enhanced photoprotection and reduced environmental waste.
Collapse
Affiliation(s)
- Izadora de Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Vila Monte Alegre, Ribeirao Preto 14040-900, SP, Brazil
- Department of Dermatology, Venereology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gabriella C. P. Grimmelprez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Vila Monte Alegre, Ribeirao Preto 14040-900, SP, Brazil
| | - Klenicy K. L. Yamaguchi
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari 69460-000, AM, Brazil
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martina C. Meinke
- Department of Dermatology, Venereology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Lorena R. Gaspar
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Vila Monte Alegre, Ribeirao Preto 14040-900, SP, Brazil
| |
Collapse
|
2
|
Stefanowicz-Hajduk J, Nowak A, Hering A, Kucharski Ł, Graczyk P, Kowalczyk M, Sulikowski T, Muzykiewicz-Szymańska A. Antiaging Properties of Kalanchoe blossfeldiana Ethanol Extract-Ex Vivo and In Vitro Studies. Molecules 2024; 29:5548. [PMID: 39683708 DOI: 10.3390/molecules29235548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about its therapeutic effects on the skin. In this study, the antioxidant properties of K. blossfeldiana ethanol extracts and the skin permeation of a topical hydrogel containing the extract (HKB) were assessed. Additionally, the content of active compounds in the K. blossfeldiana extract was evaluated by UHPLC-MS and HPLC-UV. The extract was analyzed with three antioxidant assays: ABTS, DPPH, and FRAP. Furthermore, the antielastase and antihialuronidase properties of the tested extract were assessed. Ex vivo penetration studies were performed using the Franz diffusion cells. The estimation of the cytotoxicity of HKB was performed by using an MTT assay ((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) on the human fibroblasts HFF-1. The results obtained show that the antioxidant properties of K. blossfeldiana extract were similar to those of ascorbic acid, while antielastase and antihialuronidase tests indicated the strong antiaging and anti-inflammatory activity of the extract (IC50 was 26.8 ± 0.13 and 77.31 ± 2.44 µg/mL, respectively). Moreover, active ingredients contained in K. blossfeldiana extract penetrated through the human skin and accumulated in it. The cytotoxicity test showed that HKB had no significant effect on human fibroblasts at a concentration up to 0.5%. In conclusion, the hydrogel containing the K. blossfeldiana extract can be considered as an interesting and new alternative to dermatologic and cosmetic preparations.
Collapse
Affiliation(s)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Pulawy, Poland
| | - Tadeusz Sulikowski
- Clinic of General, Minimally Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Muzykiewicz-Szymańska A, Nowak A, Kucharska E, Cybulska K, Klimowicz A, Kucharski Ł. Sanguisorba officinalis L. ethanolic extracts and essential oil - chemical composition, antioxidant potential, antibacterial activity, and ex vivo skin permeation study. Front Pharmacol 2024; 15:1390551. [PMID: 39286626 PMCID: PMC11402713 DOI: 10.3389/fphar.2024.1390551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Sanguisorba officinalis L. is classified as a medicinal plant and used in traditional medicine. The root of this plant is mainly used as a medicinal raw material, but the above-ground parts are also a valuable source of health-promoting biologically active compounds. Method The study aimed to evaluate the antioxidant activity and total polyphenol content (TPC) of extracts prepared in 70% and 40% aqueous ethanol solution (dry extract content 50-500 g/L) from the aerial parts of S. officinalis. The essential oil was isolated from the tested raw material, and its composition was determined using GC-MS. Ethanolic extracts and essential oil have been tested for antibacterial activity. The extract in 70% v/v ethanol (dry extract content: 500 g/L) was subjected to HPLC analysis for the content of selected phenolic acids and an ex vivo skin permeation study. The ability of these metabolites to permeate and accumulate in the skin was analysed. Results Extracts prepared at both ethanol concentrations showed similar antioxidant activity and TPC. Depending on the method, concentration of solvent, and dry extract content (50-500 g/L), the activity ranged from 1.97 to 84.54 g Trolox/L. TPC range of 3.80-37.04 g GA/L. Gallic acid (424 mg/L) and vanillic acid (270 mg/L) had the highest concentrations among the phenolic acids analysed. Vanillic acid (10 μg) permeates the skin at the highest concentration. The highest accumulation in the skin was found for 2,5-dihydroxybenzoic acid (53 μg/g skin), 2,3-dihydroxybenzoic acid (45 μg/g skin), and gallic acid (45 μg/g skin). The tested ethanolic extracts exhibited antibacterial activity. Samples with a dry extract concentration of 500 g/L showed the largest growth inhibition zones. The most sensitive strains to these extracts were P. aeruginosa (24 mm), S. lutea (23 mm), and S. pneumoniae (22 mm). The smallest inhibition zones were observed for B. subtilis (17 mm). The essential oil showed weaker antimicrobial activity (growth inhibition zone 8-10 mm). The GC-MS method identified 22 major components of the essential oil, including aliphatic hydrocarbons, unsaturated terpene alcohols, aliphatic aldehydes, unsaturated and saturated fatty acids, sesquiterpene, phytyl ester of linoleic acid, nitrogen compound, phytosterol, terpene ketone, phenylpropanoids, aliphatic alcohol, diterpenoid, aromatic aldehyde, and aliphatic carboxylic acid. Discussion The conducted research has shown that ethanolic extracts from Sanguisorbae herba are a valuable source of compounds with antibacterial and antioxidant potential, including phenolic acids. The fact that selected phenolic acids contained in the tested extract have the ability to permeate and accumulate in the skin provides the basis for conducting extended research on the use of extracts from this plant raw material in cosmetic and pharmaceutical preparations applied to the skin.
Collapse
Affiliation(s)
- Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Edyta Kucharska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Krystyna Cybulska
- Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
4
|
Pagani E, Ropke CD, Soares CM, Perez SAC, Benevides PJC, Barbosa BS, Carvalho ACB, Behrens MD. Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products. Pharmaceuticals (Basel) 2024; 17:703. [PMID: 38931370 PMCID: PMC11206302 DOI: 10.3390/ph17060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the vast global botanical diversity, the pharmaceutical development of herbal medicinal products (HMPs) remains underexploited. Of over 370,000 described plant species, only a few hundred are utilized in HMPs. Most of these have originated from traditional use, and only a minority come from megadiverse countries. Exploiting the pharmacological synergies of the hundreds of compounds found in poorly studied plant species may unlock new therapeutic possibilities, enhance megadiverse countries' scientific and socio-economic development, and help conserve biodiversity. However, extensive constraints in the development process of HMPs pose significant barriers to transforming this unsatisfactory socio-economic landscape. This paper proposes a roadmap to overcome these challenges, based on the technology readiness levels (TRLs) introduced by NASA to assess the maturity of technologies. It aims to assist research entities, manufacturers, and funding agencies from megadiverse countries in the discovery, development, and global market authorization of innovative HMPs that comply with regulatory standards from ANVISA, EMA, and FDA, as well as WHO and ICH guidelines.
Collapse
Affiliation(s)
- Eduardo Pagani
- Medical Department, Azidus Brasil, Valinhos 13271-130, SP, Brazil
- Centroflora Group, Innovation Department, Campinas 06460-040, SP, Brazil
| | | | - Cristiane Mota Soares
- Project Management Office, Vice Direction of Education, Research and Innovation, Institute of Drug Technology Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil
| | - Sandra Aurora Chavez Perez
- Project Management Office, Vice Direction of Education, Research and Innovation, Institute of Drug Technology Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil
| | | | | | - Ana Cecilia Bezerra Carvalho
- GMESP, Brazilian Health Regulatory Agency, Agência Nacional de Vigilância Sanitária (ANVISA), Brasília 71205-050, DF, Brazil
| | - Maria Dutra Behrens
- Natural Products Department, Vice Direction of Education, Research and Innovation, Institute of Drug Technology Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
5
|
Zagórska-Dziok M, Nowak A, Muzykiewicz-Szymańska A, Ziemlewska A, Nizioł-Łukaszewska Z, Mokrzyńska A, Wójciak M, Sowa I. Investigating the Anti-Inflammatory Properties and Skin Penetration Ability of Cornelian Cherry ( Cornus mas L.) Extracts. Int J Mol Sci 2024; 25:4763. [PMID: 38731982 PMCID: PMC11083856 DOI: 10.3390/ijms25094763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (A.M.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (A.N.); (A.M.-S.)
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (A.N.); (A.M.-S.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (A.M.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (A.M.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.); (A.M.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
6
|
Hassan A, Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Bangay G, Al-Sawahli MM, Fouad MK, Zoair MA, Abdalrhman TI, Elebeedy D, Ibrahim IA, Mohamed AF, Abd El Maksoud AI. Synergistic Differential DNA Demethylation Activity of Danshensu ( Salvia miltiorrhiza) Associated with Different Probiotics in Nonalcoholic Fatty Liver Disease. Biomedicines 2024; 12:279. [PMID: 38397881 PMCID: PMC10886676 DOI: 10.3390/biomedicines12020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major hepatic disorder occurring in non-alcohol-drinking individuals. Salvianic acid A or Danshensu (DSS, 3-(3, 4-dihydroxyphenyl)-(2R)-lactic acid), derived from the root of Danshen (Salvia miltiorrhiza), has demonstrated heart and liver protective properties. In this work, we investigated the antioxidant activity and hepatoprotective activity of Danshensu alone and in combination with different agents, such as probiotic bacteria (Lactobacillus casei and Lactobacillus acidophilus), against several assays. The inhibition mechanism of the methylation gene biomarkers, such as DNMT-1, MS, STAT-3, and TET-1, against DSS was evaluated by molecular docking and RT-PCR techniques. The physicochemical and pharmacokinetic ADMET properties of DSS were determined by SwissADME and pkCSM. The results indicated that all lipid blood test profiles, including cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), were reduced after the oral administration of Danshensu combined with probiotics (L. casei and L. acidophilus) that demonstrated good, efficient free radical scavenging activity, measured using anti-oxidant assays. ADMET and drug-likeness properties certify that the DSS could be utilized as a feasible drug since DSS showed satisfactory physicochemical and pharmacokinetic ADMET properties.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Patrícia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas), Ctra. Madrid-Barcelona km. 33,600, 28805 Alcalá de Henares, Madrid, España
| | - Majid Mohammed Al-Sawahli
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt
| | - Marina K. Fouad
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Mohammad A. Zoair
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Tamer I. Abdalrhman
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Dalia Elebeedy
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt;
| | - Aly F. Mohamed
- Holding Company for Vaccine and Sera Production (VACSERA), Giza 22311, Egypt;
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
7
|
Photoprotective Efficacy of the Association of Rosmarinic Acid 0.1% with Ethylhexyl Methoxycinnamate and Avobenzone. COSMETICS 2023. [DOI: 10.3390/cosmetics10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Innovative prototype sunscreens with reduced ultraviolet (UV) filters are required to achieve safer, more effective, and more environmentally friendly formulations. Rosmarinic acid (RA) is a phenolic antioxidant and potential candidate for multifunctional sunscreens. We used RA (0.1% w/w) in combination with avobenzone (2.5% and 5.0% w/w), a UVA filter, and ethylhexyl methoxycinnamate (10.0% w/w), a UVB filter, to evaluate in vitro sun protection factor (SPF) and critical wavelength, photostability, and the in vivo SPF. RA, in vitro, improved the SPF of F2 (ethylhexyl methoxycinnamate 10.0% w/w + avobenzone 2.5% w/w + RA 0.1% w/w) and F3 (ethylhexyl methoxycinnamate 10.0% w/w + avobenzone 5.0% w/w + RA 0.1% w/w), which also presented broad-spectrum profiles; however, no expressive effects were observed for the critical wavelength (nm). By the in vivo trial, RA showed an increment in the F3 SPF value and maintained the F2 effectiveness, even when avobenzone was at 2.5%. Nonetheless, no increase in photostability was observed. Our findings suggest that incorporating natural molecules with antioxidant activities into sunscreens could decrease the proportion of conventional UV filters in the final product, with the advantage of providing other functional properties. Further investigation of higher RA concentrations, even from other sources, and other UV filter combinations could reveal important data for the development of multifunctional sunscreens.
Collapse
|
8
|
Li L, Chong L, Huang T, Ma Y, Li Y, Ding H. Natural products and extracts from plants as natural UV filters for sunscreens: A review. Animal Model Exp Med 2022. [DOI: 10.1002/ame2.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Liyan Li
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Lan Chong
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Tao Huang
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| | - Yunge Ma
- Pharmacy College Henan University Kaifeng PR China
| | - Yingyan Li
- Pharmacy College Henan University Kaifeng PR China
| | - Hui Ding
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| |
Collapse
|
9
|
Nowak A, Zagórska-Dziok M, Perużyńska M, Cybulska K, Kucharska E, Ossowicz-Rupniewska P, Piotrowska K, Duchnik W, Kucharski Ł, Sulikowski T, Droździk M, Klimowicz A. Assessment of the Anti-Inflammatory, Antibacterial and Anti-Aging Properties and Possible Use on the Skin of Hydrogels Containing Epilobium angustifolium L. Extracts. Front Pharmacol 2022; 13:896706. [PMID: 35846995 PMCID: PMC9284006 DOI: 10.3389/fphar.2022.896706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Epilobium angustifolium L. is an ethnomedicinal plant known as a medicinal plant in many regions of the world, among others, in various skin diseases. Despite the great interest in this plant, there are still few reports of biological activity of ready-made dermatological or cosmetical preparations containing the E. angustifolium extracts. The antioxidant, anti-ageing, anti-inflammatory, antibacterial properties and toxicity, wound healing, and skin permeation of topical hydrogels containing E. angustifolium extracts (HEas) was assessed. First, the plant extracts were prepared using three solvents: 70% (v/v) ethanol, 70% (v/v) isopropanol and water, next by preparing hydrogels witch by dry extracts (HEa-EtOH), (HEa-iPrOH) and (HEa-WA), respectively. Finally, the content of selected phenolic acids in the HEas was evaluated by high-performance liquid chromatography (HPLC). All the HEas were characterized by high antioxidant activity. The most increased antibacterial activity was observed for a strain of Streptococcus pneumoniae ATCC 49619, Escherichia coli, Enterococcus faecalis ATCC 29212, Enterococcus faecium, Sarcina lutea ATCC 9341 and Bacillus pseudomycoides, while the strains of Streptococcus epidermidis, Bacillus subtilis, and Staphylococcus aureus were the least sensitive. All the HEas showed a reduction in the activity of lipoxygenase enzymes, proteases, and inhibition of protein denaturation. The HEa-EtOH and HEa-iPrOH also enhanced the wound healing activity of HDF cells. Additionally, in vitro penetration studies were performed using the Franz diffusion cells. These studies showed that the active ingredients contained in E. angustifolium penetrate through human skin and accumulate in it. Furthermore, the hydrogels containing E. angustifolium extracts showed a broad spectrum of activity. Therefore, they can be considered as an interesting alternative for dermatologic and cosmetic preparations.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
- *Correspondence: Anna Nowak,
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Rzeszów, Poland
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krystyna Cybulska
- Department of Microbiology and Environmental Chemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Szczecin, Poland
| | - Edyta Kucharska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Duchnik
- Department of Pharmaceutical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Sulikowski
- Clinic of General Surgery, Minimally Invasive and Gastrointestinal, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
10
|
Nowak A, Zielonka-Brzezicka J, Perużyńska M, Klimowicz A. Epilobium angustifolium L. as a Potential Herbal Component of Topical Products for Skin Care and Treatment-A Review. Molecules 2022; 27:3536. [PMID: 35684473 PMCID: PMC9182203 DOI: 10.3390/molecules27113536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Epilobium angustifolium L. (EA) has been used as a topical agent since ancient times. There has been an increasing interest in applying EA as a raw material used topically in recent years. However, in the literature, there are not many reports on the comprehensive application of this plant to skin care and treatment. EA contains many valuable secondary metabolites, which determine antioxidant, anti-inflammatory, anti-aging, and antiproliferative activity effects. One of the most important active compounds found in EA is oenothein B (OeB), which increases the level of ROS and protects cells from oxidative damage. OeB also influences wound healing and reduces inflammation by strongly inhibiting hyaluronidase enzymes and inhibiting COX-1 and COX-2 cyclooxygenases. Other compounds that play a key role in the context of application to the skin are flavonoids, which inhibit collagenase and hyaluronidase enzymes, showing anti-aging and anti-inflammatory properties. While terpenes in EA play an important role in fighting bacterial skin infections, causing, among other things cell membrane, permeability increase as well as the modification of the lipid profiles and the alteration of the adhesion of the pathogen to the animal cells. The available scientific information on the biological potential of natural compounds can be the basis for the wider use of EA in skin care and treatment. The aim of the article is to review the existing literature on the dermocosmetic use of E. angustifolium.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| |
Collapse
|
11
|
Etsassala NGER, Badmus JA, Marnewick JL, Egieyeh S, Iwuoha EI, Nchu F, Hussein AA. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Plectranthus ecklonii Constituents. Antioxidants (Basel) 2022; 11:antiox11020378. [PMID: 35204260 PMCID: PMC8869333 DOI: 10.3390/antiox11020378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 01/29/2023] Open
Abstract
Shortage in insulin secretion or degradation of produced insulin is the principal characteristic of the metabolic disorder of diabetes mellitus (DM). However, because the current medications for the treatment of DM have many detrimental side effects, it is necessary to develop more effective antidiabetic drugs with minimal side effects. Alpha-glucosidase and alpha-amylase inhibitors are directly implicated in the delay of carbohydrate digestion. Pharmacologically, these inhibitors could be targeted for the reduction in glucose absorption rate and, subsequently, decreasing the postprandial rise in plasma glucose and the risk for long-term diabetes complications. The main objectives of this research study were to isolate different phytochemical constituents present in the methanolic extract of Plectranthusecklonii and evaluate their alpha-glucosidase and alpha-amylase inhibitory activities and antioxidant capacity. The phytochemical investigation of the methanolic extract of P. ecklonii yielded three known compounds, viz. parvifloron D, F, and G (1–3, respectively). Parvifloron G was isolated for the first time from P. ecklonii. The in vitro bio-evaluation of the methanolic extract of P. ecklonii and its isolated compounds against alpha-glucosidase showed that 3 exhibited moderate inhibitory activity with IC50 values of 41.3 ± 1.2 μg/mL. Molecular docking analysis confirmed the alpha-glucosidase inhibitory activity demonstrated by 3. Additionally, strong antioxidant capacities were demonstrated by 3 and 1 on ORAC (28726.1 ± 8.1; 3942.9.6.6 ± 0.1 µM TE/g), respectively, which were comparable with the reference antioxidant epigallocatechingallate (EGCG). Furthermore, 3 also showed strong activity on TEAC (3526.1 ± 0.6 µM TE/g), followed by 2 (1069.3 ± 2.4 µM TE/g), as well as on FRAP (1455.4 ± 2.0 µM AAE/g). The methanolic extract of P. ecklonii is a rich source of abietane diterpenes with strong antioxidant activities. This is the first scientific report on alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of P. ecklonii constituents.
Collapse
Affiliation(s)
- Ninon G. E. R. Etsassala
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Symphony Road, Bellville, Cape Town 7535, South Africa;
- Correspondence: ; Tel.: +27-810-728-472
| | - Jelili A. Badmus
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Samuel Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa;
| | - Emmanuel. I. Iwuoha
- Chemistry Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Felix Nchu
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Symphony Road, Bellville, Cape Town 7535, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| |
Collapse
|
12
|
Rodrigues FFG, Boligon AA, Menezes IRA, Galvão-Rodrigues FF, Salazas GJT, Nonato CFA, Braga NTTM, Correia FMA, Caldas GFR, Coutinho HDM, Siyadatpanah A, Kim B, Costa JGM, Barros ARC. HPLC/DAD, Antibacterial and Antioxidant Activities of Plectranthus Species (Lamiaceae) Combined with the Chemometric Calculations. Molecules 2021; 26:molecules26247665. [PMID: 34946747 PMCID: PMC8703593 DOI: 10.3390/molecules26247665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in antibiotic resistance and the emergence of new bacterial infections have intensified the research for natural products from plants with associated therapy. This study aimed to verify the antibacterial and antioxidant activity of crude extracts of the genus Plectranthus species, being the first report on the modulation of aminoglycosides antibiotic activity by Plectranthus amboinicus extracts. The chemical composition was obtained by chemical prospecting and High-Performance Liquid Chromatography with diode arrangement detector (HPLC/DAD). The antibacterial activities of the extracts alone or in association with aminoglycosides were analyzed using the microdilution test. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The phytochemical prospection allowed the flavonoids, saponins, tannins and triterpenoids to be identified. Quercetin, rutin, gallic acid, chlorogenic acid, caffeic acid, catechin, kaempferol, glycosylated kaempferol, quercitrin, and isoquercitrin were identified and quantified. The principal component analysis (PCA) observed the influence of flavonoids and phenolic acids from Plectranthus species on studied activities. Phytochemical tests with the extracts indicated, especially, the presence of flavonoids, confirmed by quantitative analysis by HPLC. The results revealed antibacterial activities, and synergistic effects combined with aminoglycosides, as well as antioxidant potential, especially for P. ornatus species, with IC50 of 32.21 µg/mL. Multivariate analyzes show that the inclusion of data from the antioxidant and antibacterial activity suggests that the antioxidant effect of these species presents a significant contribution to the synergistic effect of phytoconstituents, especially based on the flavonoid contents. The results of this study suggest the antibacterial activity of Plectranthus extracts, as well as their potential in modifying the resistance of the analyzed aminoglycosides.
Collapse
Affiliation(s)
- Fabíola F. G. Rodrigues
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil; (F.F.G.R.); (I.R.A.M.); (H.D.M.C.); (A.R.C.B.)
- Health Unit, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-000, Brazil; (N.T.T.M.B.); (F.M.A.C.); (G.F.R.C.)
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
| | - Aline A. Boligon
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Irwin R. A. Menezes
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil; (F.F.G.R.); (I.R.A.M.); (H.D.M.C.); (A.R.C.B.)
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
| | - Fábio F. Galvão-Rodrigues
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
| | - Gerson J. T. Salazas
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
| | - Carla F. A. Nonato
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
| | - Nara T. T. M. Braga
- Health Unit, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-000, Brazil; (N.T.T.M.B.); (F.M.A.C.); (G.F.R.C.)
| | - Fabrina M. A. Correia
- Health Unit, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-000, Brazil; (N.T.T.M.B.); (F.M.A.C.); (G.F.R.C.)
| | - Germana F. R. Caldas
- Health Unit, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-000, Brazil; (N.T.T.M.B.); (F.M.A.C.); (G.F.R.C.)
| | - Henrique D. M. Coutinho
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil; (F.F.G.R.); (I.R.A.M.); (H.D.M.C.); (A.R.C.B.)
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Correspondence: (A.S.); (B.K.); (J.G.M.C.)
| | - Bonglee Kim
- Department of Patology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (A.S.); (B.K.); (J.G.M.C.)
| | - José G. M. Costa
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil; (F.F.G.R.); (I.R.A.M.); (H.D.M.C.); (A.R.C.B.)
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (F.F.G.-R.); (G.J.T.S.); (C.F.A.N.)
- Correspondence: (A.S.); (B.K.); (J.G.M.C.)
| | - Adriana R. C. Barros
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, State University of Ceará, Fortaleza 60740-000, Brazil; (F.F.G.R.); (I.R.A.M.); (H.D.M.C.); (A.R.C.B.)
- Experimental Biology Nucleus, University of Fortaleza, Fortaleza 60811-905, Brazil
| |
Collapse
|
13
|
Antão AR, Bangay G, Domínguez-Martín EM, Díaz-Lanza AM, Ríjo P. Plectranthus ecklonii Benth: A Comprehensive Review Into its Phytochemistry and Exerted Biological Activities. Front Pharmacol 2021; 12:768268. [PMID: 34916943 PMCID: PMC8670309 DOI: 10.3389/fphar.2021.768268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Ethnopharmacological Relevance: Plectranthus genus (Lamiaceae family) contain several species with acknowledged ethnopharmacological uses, such as, for gastrointestinal and respiratory-related problems, due to their anti-inflammatory, antibacterial and antifungal properties. The bioactivity of isolated medicinal compounds from this genus justifies the increased interest in recent times for species of Plectranthus, placing them in the spotlight for natural product drug development. Aim of the study: To the best of our knowledge, this is the first review on the biological activities of Plectranthus ecklonii Benth. As such, the aim of this review was three-fold: 1) to summarize the chemical compounds isolated from P. ecklonii; 2) to collate the biological activities and mechanisms of action of these compounds from in vitro studies; and 3) to evaluate the documented uses and potential applications of this species, in order to postulate on the direction of pharmaceutical uses of this species. Materials and methods: An extensive database retrieval was performed using the electronic databases Web of Science, PubMed, Google Scholar and ScienceDirect. The search criteria consisted of the keywords "Plectranthus ecklonii", "Plectranthus ecklonii + review", "Plectranthus ecklonii + diterpenes" or "Plectranthus ecklonii + abietanes", "ecklonii + parviflorone D", searched individually and as combinations. Eligibility criteria were set out and titles in English, Portuguese and Spanish were reviewed, with all references included dating from 1970 to 2021. A total of 169 papers were selected and included. Chemical structures were drawn using ChemDraw 20.0, CID numbers were searched in PubChem and the PRISMA diagram was created using PowerPoint 2012. Results: To date, a total of 28 compounds have been isolated from P. ecklonii, including diterpenes, triterpenes, flavonoids, and hydroxycinnamic acids. Most focused on the antimicrobial action of its constituents, although compounds have demonstrated other bioactivities, namely antioxidant, anti-inflammatory and antitumor. The most recent studies emphasize the diterpenoids, particularly parviflorone D, with the help of nanotechnology. Conclusions: The widespread ethnobotanical and traditional uses of P. ecklonii can be scientifically justified by a range of biological activities, demonstrated by isolated secondary metabolites. These bioactivities showcase the potential of this species in the development of economically important active pharmaceutical ingredients, particularly in anticancer therapy.
Collapse
Affiliation(s)
- Ana Ribeirinha Antão
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Gabrielle Bangay
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Eva María Domínguez-Martín
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Ana María Díaz-Lanza
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Patrícia Ríjo
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
14
|
Andrade JM, Domínguez-Martín EM, Nicolai M, Faustino C, Rodrigues LM, Rijo P. Screening the dermatological potential of plectranthus species components: antioxidant and inhibitory capacities over elastase, collagenase and tyrosinase. J Enzyme Inhib Med Chem 2021; 36:257-269. [PMID: 33322969 PMCID: PMC7808741 DOI: 10.1080/14756366.2020.1862099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of Plectranthus spp. plant extracts (aqueous, acetonic, methanolic and ethyl acetic) obtained from eight different species, and previously isolated compounds (ranging from polyphenols, diterpenes and triterpenes), were assayed for in vitro inhibition of the skin-related enzymes tyrosinase, collagenase and elastase, and for studying their antioxidant properties. The ethyl acetic extracts of P. grandidentatus and P. ecklonii registered the highest antioxidant activity, whereas acetonic, methanolic and ethyl acetic extracts of P. ecklonii, P. grandidentatus, P. madagascariensis and P. saccatus concerning the enzymatic inhibition assays revealed high anti-tyrosinase and anti-collagenase activities. From the isolated compounds tested, abietane diterpenes and triterpenes were highly active against tyrosinase and elastase activity. Overall, the experimental results showed the powerful antioxidant and inhibitory action on skin-related enzymes tyrosinase, collagenase and elastase of Plectranthus spp. extracts and/or isolated compounds, supporting their further research as bioactive metabolites against skin sagging and hyperpigmentation in cosmetic and pharmaceutical formulations.
Collapse
Affiliation(s)
- Joana M Andrade
- Research Center for Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Eva María Domínguez-Martín
- Research Center for Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal.,Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Madrid, Spain
| | - Marisa Nicolai
- Research Center for Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon (ULisboa), Lisbon, Portugal
| | - Luís Monteiro Rodrigues
- Research Center for Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Patrícia Rijo
- Research Center for Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon (ULisboa), Lisbon, Portugal
| |
Collapse
|
15
|
Nowak A, Ossowicz-Rupniewska P, Rakoczy R, Konopacki M, Perużyńska M, Droździk M, Makuch E, Duchnik W, Kucharski Ł, Wenelska K, Klimowicz A. Bacterial Cellulose Membrane Containing Epilobium angustifolium L. Extract as a Promising Material for the Topical Delivery of Antioxidants to the Skin. Int J Mol Sci 2021; 22:6269. [PMID: 34200927 PMCID: PMC8230535 DOI: 10.3390/ijms22126269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, In Vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (M.P.); (M.D.)
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (M.P.); (M.D.)
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Karolina Wenelska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
16
|
Nowak A, Zagórska-Dziok M, Ossowicz-Rupniewska P, Makuch E, Duchnik W, Kucharski Ł, Adamiak-Giera U, Prowans P, Czapla N, Bargiel P, Petriczko J, Markowska M, Klimowicz A. Epilobium angustifolium L. Extracts as Valuable Ingredients in Cosmetic and Dermatological Products. Molecules 2021; 26:3456. [PMID: 34200200 PMCID: PMC8201033 DOI: 10.3390/molecules26113456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Epilobium angustifolium L. is a popular and well-known medicinal plant. In this study, an attempt to evaluate the possibility of using this plant in preparations for the care and treatment of skin diseases was made. The antioxidant, antiaging and anti-inflammatory properties of ethanolic extracts from Epilobium angustifolium (FEE) were assessed. Qualitative and quantitative evaluation of extracts chemically composition was performed by gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The total polyphenol content (TPC) of biologically active compounds, such as the total content of polyphenols (TPC), flavonoids (TFC), and assimilation pigments, as well as selected phenolic acids, was assessed. FEE was evaluated for their anti-inflammatory and antiaging properties, achieving 68% inhibition of lipoxygenase activity, 60% of collagenase and 49% of elastase. FEE also showed high antioxidant activity, reaching to 87% of free radical scavenging using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 59% using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, in vitro penetration studies were performed using two vehicles, i.e., a hydrogel and an emulsion containing FEE. These studies showed that the active ingredients contained in FEE penetrate through human skin and accumulate in it. The obtained results indicate that E. angustifolium may be an interesting plant material to be applied as a component of cosmetic and dermatological preparations with antiaging and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (W.D.); (Ł.K.); (A.K.)
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, PL-35225 Rzeszów, Poland;
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, PL-70322 Szczecin, Poland; (P.O.-R.); (E.M.)
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, PL-70322 Szczecin, Poland; (P.O.-R.); (E.M.)
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (W.D.); (Ł.K.); (A.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (W.D.); (Ł.K.); (A.K.)
| | - Urszula Adamiak-Giera
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland;
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.); (M.M.)
| | - Norbert Czapla
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.); (M.M.)
| | - Piotr Bargiel
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.); (M.M.)
| | - Jan Petriczko
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.); (M.M.)
| | - Marta Markowska
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.); (M.M.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
17
|
Nowak A, Cybulska K, Makuch E, Kucharski Ł, Różewicka-Czabańska M, Prowans P, Czapla N, Bargiel P, Petriczko J, Klimowicz A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed ( Epilobium angustifolium L.). Molecules 2021; 26:E329. [PMID: 33435259 PMCID: PMC7827182 DOI: 10.3390/molecules26020329] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin-Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Krystyna Cybulska
- Department of Microbiology and Environmental Chemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Szczecin, PL-71434 Szczecin, Poland;
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, PL-70322 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Monika Różewicka-Czabańska
- Clinic of Skin and Venereal Diseases, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland;
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Norbert Czapla
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Piotr Bargiel
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Jan Petriczko
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| |
Collapse
|