1
|
Barraza GA, Maza JR, Kouznetsov VV, Gómez CMM. Exploring quinoline-type inhibitors of ergosterol biosynthesis: Binding mechanism investigation via molecular docking, pharmacophore mapping, and dynamics simulation approaches. Comput Biol Med 2025; 185:109524. [PMID: 39693691 DOI: 10.1016/j.compbiomed.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Drug-resistant fungal infections pose a formidable challenge in healthcare, attributed to ergosterol production as a key mechanism of resistance. It is therefore imperative to target this pathway for effective therapeutic interventions. In this study, we have analyzed the binding mode of twelve quinoline derivatives known to be effective against various Candida species, Microsporum gypseum, and Cryptococcus neoformans. Employing molecular docking techniques, pharmacological modeling, and molecular dynamics, we have delved into interactions with Erg1, Erg11, and Erg24 proteins, crucial in ergosterol biosynthesis. Our analysis unveiled critical interactions that facilitate the docking and stabilization of C-2-substituted quinoline derivatives on these proteins, highlighting their potential as regulators of ergosterol synthesis. Furthermore, complexes formed with Erg1 … 8 (MIC = 125 μg/mL) and Erg24 … 4 (MIC = 62 μg/mL) showed higher affinity and stability during the docking process, pointing to their promising role as regulatory agents of these proteins. This in silico approach provides insights into potential pathways to combat drug-resistant fungal infections.
Collapse
Affiliation(s)
- Gustavo A Barraza
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia; Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Julio Román Maza
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia
| | - Vladimir V Kouznetsov
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia
| |
Collapse
|
2
|
Fonseca Do Carmo PH, Pinheiro Lage AC, Garcia MT, Soares da Silva N, Santos DA, Mylonakis E, Junqueira JC. Resveratrol-coated gold nanorods produced by green synthesis with activity against Candida albicans. Virulence 2024; 15:2416550. [PMID: 39427236 PMCID: PMC11492707 DOI: 10.1080/21505594.2024.2416550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024] Open
Abstract
Candida albicans is an opportunistic yeast capable of causing a wide range of mucosal, cutaneous, and systemic infections. However, therapeutic strategies are limited to a few antifungal agents. Inorganic nanoparticles have been investigated as carrier systems for antifungals as potential new treatments. In this study, we focused on the antifungal activity of gold nanorods, a specific rod-shaped gold nanoparticle, produced by green synthesis using resveratrol as a metal-reducing agent. The synthesis method resulted in stable control nanoparticles (AuNp) and resveratrol-coated gold nanoparticles (AuNpRSV) with medium sizes of 32.4 × 15.9 nm for AuNp, and 33.5 × 15.3 nm for AuNpRSV. Both AuNp and AuNpRSV inhibited the C. albicans grown at 2.46 µg/mL, exhibited fungicidal effects at 4.92 µg/mL, and significantly decreased filamentation, biofilm viability, reactive oxygen species production and ergosterol levels of C. albicans. In addition, exposure to AuNpRSV reduced the ability of C. albicans to grow in the presence of cell membrane stressors. Transmission electron microscopy revealed enlargement of the cell wall and retraction of the cell membrane after treatment with AuNp and AuNpRSV. Promisingly, in vivo toxicity analysis demonstrated that both nanoparticles maintained the full viability of Galleria mellonella larvae at 49.20 µg/mL. In conclusion, both gold nanoparticles exhibited antifungal activity; however, these effects were enhanced by AuNpRSV. Altogether, AuNps and AuNpRSVs are potential antifungal agents for the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Paulo Henrique Fonseca Do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Newton Soares da Silva
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Daniel Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| |
Collapse
|
3
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
4
|
Sasidharan S, Nishanth KS, Nair HJ. A semi purified hydroalcoholic fraction from Caesalpinia bonduc seeds causes ergosterol biosynthesis inhibition in Candida albicans resulting in cell membrane damage. Front Pharmacol 2023; 14:1189241. [PMID: 37377930 PMCID: PMC10291067 DOI: 10.3389/fphar.2023.1189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Candida species are currently developing resistance to prevailing commercially available drugs, which raises an instantaneous need to discover novel antifungals. To cope with this shocking situation, phytochemicals are the richest, safest, and most potent source of excellent antimicrobials with broad-spectrum activity. The aim of the current study is to explore the anticandidal potential of the various fractions purified from the hydroalcoholic extract of C. bonduc seed. Out of five fractions purified from the hydroalcoholic extract, fraction 3 (Fr. 3) recorded the best activity against C. albicans (8 μg/mL) and thus this species was chosen for further mechanism of action studies. The phytochemical examination reveals that Fr. 3 was found to contain steroids and triterpenoids. This was further supported by LC-QTOF-MS and GCMS analyses. Our findings show that Fr. 3 targets the ergosterol biosynthesis pathway in C. albicans by inhibiting the lanosterol 14-α demethylase enzyme and downregulating expression of its related gene ERG11. Molecular docking outcomes disclosed favorable structural dynamics of the compounds, implying that the compounds present in Fr. 3 would be able to successfully bind to the lanosterol 14-α demethylase, as evidenced by the docked compounds' strong interaction with the target enzyme's amino acid residues. Considering virulence factors, the Fr. 3 recorded significant antibiofilm activity as well as germ-tube reduction potential. Furthermore, Fr. 3 enhances the production of intracellular reactive oxygen species (ROS). This suggests that the antifungal activity of Fr. 3 was associated with membrane damage and the induction of ROS production, resulting in cell death. Fluorescence microscopic analysis of PI stained Candida further showed changes in the plasma membrane permeability, which causes severe loss of intracellular material and osmotic balance. This was demonstrated by the potassium ion leakage and release of genetic materials. Finally, the erythrocyte lysis assay confirmed the low cytotoxicity of Fr. 3. Both in silico and in vitro results suggest that Fr. 3 has the potential to propel forward novel antifungal drug discovery programmes.
Collapse
Affiliation(s)
- Shan Sasidharan
- 1Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| | - Kumar S. Nishanth
- 1Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| | - Hareendran. J Nair
- 2Department of R&D, Pankajakasthuri Herbals India Pvt Ltd., Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| |
Collapse
|
5
|
Gupta L, Sen P, Bhattacharya AK, Vijayaraghavan P. Isoeugenol affects expression pattern of conidial hydrophobin gene RodA and transcriptional regulators MedA and SomA responsible for adherence and biofilm formation in Aspergillus fumigatus. Arch Microbiol 2022; 204:214. [PMID: 35314887 PMCID: PMC8938220 DOI: 10.1007/s00203-022-02817-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Aspergillus fumigatus is one of the major pathogenic fungal species, causing life-threatening infections. Due to a limited spectrum of available antifungals, exploration of new drug targets as well as potential antifungal molecules has become pertinent. Rodlet layer plays an important role in adherence of fungal conidia to hydrophobic cell surfaces in host, which also leads to A. fumigatus biofilm formation, contributing factor to fungal pathogenicity. From decades, natural sources have been known for the development of new active molecules. The present study investigates effect of isoeugenol on genes responsible for hydrophobins (RodA), adhesion as well as biofilm formation (MedA and SomA) of A. fumigatus. Minimum inhibitory concentrations (MIC and IC50) of isoeugenol against A. fumigatus were determined using broth microdilution assay. The IC50 results showed reduced hydrophobicity and biofilm formation as well as eradication after treatment with the compound and electron micrograph data corroborated these findings. The qRT-PCR showed a significant downregulation of genes RodA, MedA, SomA and pksP involved in hydrophobicity and biofilm formation. SwissADME studies potentiated drug-like propensity for isoeugenol which formed four hydrogen bonds with low binding energy (− 4.54 kcal/mol) at the catalytic site of RodA protein studied via AutoDock4. Hence, the findings conclude that isoeugenol inhibits conidial hydrophobicity and biofilm formation of A. fumigatus and further investigations are warranted in this direction.
Collapse
Affiliation(s)
- Lovely Gupta
- Antimycotic and Drug Susceptibility Laboratory, Lab 120, J3 block, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA, Uttar Pradesh, India
| | - Pooja Sen
- Antimycotic and Drug Susceptibility Laboratory, Lab 120, J3 block, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA, Uttar Pradesh, India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja Vijayaraghavan
- Antimycotic and Drug Susceptibility Laboratory, Lab 120, J3 block, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA, Uttar Pradesh, India.
| |
Collapse
|
6
|
Yang D, Seo K, Kang H. Alignment Layer of Liquid Crystal Using Plant-Based Isoeugenol-Substituted Polystyrene. Polymers (Basel) 2021; 13:547. [PMID: 33673311 PMCID: PMC7918683 DOI: 10.3390/polym13040547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
We synthesized a series of renewable and plant-based isoeugenol-substituted polystyrenes (PIEU#, # = 100, 80, 60, 40, and 20, where # is the molar percent content of isoeugenol moiety), using polymer modification reactions to study their liquid crystal (LC) alignment behavior. In general, the LC cells fabricated using polymer film with a higher molar content of isoeugenol side groups showed vertical LC alignment behavior. This alignment behavior was well related to the surface energy value of the polymer layer. For example, vertical alignments were observed when the polar surface energy value of the polymer was smaller than approximately 3.59 mJ/m2, generated by the nonpolar isoeugenol moiety with long and bulky carbon groups. Good alignment stability at 100 °C and under ultraviolet (UV) irradiation of 15 J/cm2 was observed for the LC cells fabricated using PIEU100 as a LC alignment layer. Therefore, renewable isoeugenol-based materials can be used to produce an eco-friendly vertical LC alignment system.
Collapse
Affiliation(s)
| | | | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong Daero 550beon-gil, Saha-gu, Busan 604-714, Korea; (D.Y.); (K.S.)
| |
Collapse
|