1
|
Huang Y, Chi W, Li Y, Zhang C, Li J, Meng F. Morphine Preconditioning Alleviates Ischemia/Reperfusion-induced Caspase-8-dependent Neuronal Apoptosis Through cPKCγ-NF-κB-cFLIP L Pathway. J Neurosurg Anesthesiol 2025; 37:75-87. [PMID: 38577840 DOI: 10.1097/ana.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Perioperative cerebral ischemia/reperfusion injury is a major contributor to postoperative death and cognitive dysfunction in patients. It was reported that morphine preconditioning (MP) can mimic ischemia/hypoxia preconditioning to protect against ischemia/reperfusion injury. However, the mechanism of MP on the ischemia/reperfusion-induced neuronal apoptosis has not been fully clarified. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model of mice and the oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary cortical neurons were used to mimic ischemic stroke. In vivo, the infarct size was measured by using TTC staining; NDSS, Longa score system, and beam balance test were performed to evaluate the neurological deficits of mice; the expression of the protein was detected by using a western blot. In vitro, the viability of neurons was determined by using CCK-8 assay; the expression of protein and mRNA were assessed by using western blot, RT-qPCR, and immunofluorescent staining; the level of apoptosis was detected by using TUNEL staining. RESULTS MP can improve the neurological functions of mice following MCAO/R ( P <0.001, n=10 per group). MP can decrease the infarct size ( P <0.001, n=10 per group) and the level of cleaved-caspase-3 of mice following MCAO/R ( P <0.01 or 0.001, n=6 p er group). MP can increase the levels of cPKCγ membrane translocation, p-p65, and cFLIP L , and decrease the levels of cleaved-caspase-8, 3 in neurons after OGD/R or MCAO/R 1 d ( P <0.05, 0.01 or 0.001, n=6 per group). In addition, MP could alleviate OGD/R-induced cell apoptosis ( P <0.001, n=6 per group). CONCLUSION MP alleviates ischemia/reperfusion-induced Caspase 8-dependent neuronal apoptosis through the cPKCγ-NF-κB-cFLIP L pathway.
Collapse
Affiliation(s)
- Yaru Huang
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, PR China
| | - Wenying Chi
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, PR China
| | - Yan Li
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, PR China
| | - Chengzhen Zhang
- Department of Anesthesiology, Shandong First Medical University, Jinan, Shandong, PR China
| | - Junfa Li
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, PR China
- Department of Neurobiology, Capital Medical University, Beijing, PR China
| | - Fanjun Meng
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, PR China
| |
Collapse
|
2
|
Khbouz B, Musumeci L, Grahammer F, Jouret F. The Dual-specificity Phosphatase 3 (DUSP3): A Potential Target Against Renal Ischemia/Reperfusion Injury. Transplantation 2024; 108:2166-2173. [PMID: 39466786 DOI: 10.1097/tp.0000000000005009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Renal ischemia/reperfusion (I/R) injury is a common clinical challenge faced by clinicians in kidney transplantation. I/R is the leading cause of acute kidney injury, and it occurs when blood flow to the kidney is interrupted and subsequently restored. I/R impairs renal function in both short and long terms. Renal ischemic preconditioning refers to all maneuvers intended to prevent or attenuate ischemic damage. In this context, the present review focuses on the dual-specificity phosphatase 3 (DUSP3), also known as vaccinia H1-related phosphatase, an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 has different biological functions: (1) it acts as a tumor modulator and (2) it is involved in the regulation of immune response, thrombosis, hemostasis, angiogenesis, and genomic stability. These functions occur either through MAPK-dependent or MAPK-independent mechanisms. DUSP3 genetic deletion dampens kidney damage and inflammation caused by I/R in mice, suggesting DUSP3 as a potential target for preventing renal I/R injury. Here, we discuss the putative role of DUSP3 in ischemic preconditioning and the potential mechanisms of such an attenuated inflammatory response via improved kidney perfusion and adequate innate immune response.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucia Musumeci
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Department of Cardiovascular Surgery, CHU of Liège, Liège, Belgium
| | - Florian Grahammer
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Division of Nephrology, CHU of Liège, University of Liège (CHU ULiège), Liège, Belgium
| |
Collapse
|
3
|
Gao S, He Q. Opioids and the kidney: two sides of the same coin. Front Pharmacol 2024; 15:1421248. [PMID: 39135801 PMCID: PMC11317763 DOI: 10.3389/fphar.2024.1421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Renal dysfunction, including acute renal failure (ARF) and chronic kidney disease (CKD), continues to present significant health challenges, with renal ischemia-reperfusion injury (IRI) being a pivotal factor in their development and progression. This condition, notably impacting kidney transplantation outcomes, underscores the urgent need for innovative therapeutic interventions. The role of opioid agonists in this context, however, remains a subject of considerable debate. Current reviews tend to offer limited perspectives, focusing predominantly on either the protective or detrimental effects of opioids in isolation. Our review addresses this gap through a thorough and comprehensive evaluation of the existing literature, providing a balanced examination of the dualistic nature of opioids' influence on renal health. We delve into both the nephroprotective and nephrotoxic aspects of opioids, dissecting the complex interactions and paradoxical effects that embody the "two sides of the same coin" phenomenon. This comprehensive analysis is vital for understanding the intricate roles of opioids in renal pathophysiology, potentially informing the development of novel therapeutic strategies for preventing or treating hypoxic kidney injury.
Collapse
Affiliation(s)
- Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
4
|
Yi S, Cao H, Zheng W, Wang Y, Li P, Wang S, Zhou Z. Targeting the opioid remifentanil: Protective effects and molecular mechanisms against organ ischemia-reperfusion injury. Biomed Pharmacother 2023; 167:115472. [PMID: 37716122 DOI: 10.1016/j.biopha.2023.115472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.
Collapse
Affiliation(s)
- Shuyuan Yi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China; School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Hong Cao
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Weilei Zheng
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Shoushi Wang
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China.
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
5
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Zhu L, Lian W, Yao Z, Yang X, Wang Z, Lai Y, Xu S, Zhao B, Liu K. Integrated Analysis of Ferroptosis and Immunity-Related Genes Associated with Intestinal Ischemia/Reperfusion Injury. J Inflamm Res 2022; 15:2397-2411. [PMID: 35444445 PMCID: PMC9015787 DOI: 10.2147/jir.s351990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Intestinal ischemia/reperfusion (I/R) injury is an unresolved clinical challenge due to its high prevalence, difficulty in diagnosis, and lack of clinically effective therapeutic agents. Ferroptosis is a novel form of cell-regulated death that has been shown to play a role in various I/R models and has been shown to be immune-related. Further unraveling the molecular mechanisms associated with ferroptosis and immunity in intestinal I/R injury may lead to the discovery of potentially effective drugs. METHODS We obtained differentially expressed mRNAs (DEGs) in mouse intestinal tissues following intestinal I/R injury or sham surgery. Then, we extracted ferroptosis-related DEGs (FRGs) and immune-related DEGs (IRGs) from the DEGs. In addition, we performed functional analysis of FRGs and IRGs. Next, we used transcriptome sequencing from patients with intestinal I/R injury to validate the results. Then, we constructed transcription factors (TFs)-gene networks and gene-drug networks using mouse and human co-expressed FRGs (coFRG) and mouse and human co-expressed IRGs (coIRG). We also analyzed the composition of immune cells to reveal correlations between FRGs signatures and immune cells in the mouse and human gut. Finally, we validated these results through animal experiments. RESULTS We extracted 61 FRGs and 294 IRGs from mouse samples and performed PPI and functional analyses. We extracted 45 FRGs and 200 IRGs from human samples for validation, and identified 24 coFRGs,100 coIRGs and 6 hub genes (HSPA5, GDF15, TNFAIP3, HMOX1, CXCL2 and IL6) in both. We also predicted potential TF-gene networks for coFRGs and coIRGs, as well as predicted gene-drug pairs for hub genes. In addition, we found that the immune cells were altered in the early stages of intestinal I/R injury and that FRGs were closely associated with immune cells in mice and humans. Finally, we validated the hub genes in mouse samples. CONCLUSION In conclusion, we identified ferroptosis and immunity-related genes to predict their correlations in intestinal I/R injury. We also predicated potential TF-genes network and potential therapeutic targets (HSPA5, GDF15, TNFAIP3, HMOX1, CXCL2 and IL6) to provide clues for further investigation of intestinal I/R injury.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wanyi Lian
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiwen Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ziyi Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yupei Lai
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Shiting Xu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Kexuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|