1
|
Yang Q, Zhai R, Tian Y, Jin M. Dynamics of lignocellulose degradation by acid: Kinetic insights into high-solid acid pretreatment at normal temperatures. BIORESOURCE TECHNOLOGY 2025; 433:132720. [PMID: 40418998 DOI: 10.1016/j.biortech.2025.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Conventional acid pretreatment at high temperatures (>100 °C) and low solid-liquid ratios, often leads to excessive inhibitor formation. In this study, a high-solid, normal-temperature acid (HSNTA) pretreatment was developed to enhance digestibility while minimizing inhibitor generation. Corn stover was pretreated at 50 °C for 14 days with a solid-liquid ratio of 1:0.3 (56.5 % w/w solid loading), resulting in a total sugar recovery of 90.9 %. Enzymatic hydrolysis yielded 89.5 % glucan and 81.2 % xylan conversion. Kinetic analysis revealed that, under high-solid conditions, cellulose was primarily hydrolyzed into gluco-oligomers due to limited acid diffusion constraints. Xylan exhibited biphasic degradation comprising fast- and slow-reacting fractions, while lignin degradation was selective, occurring mainly in accessible regions. Kinetic models were established to quantitatively interpret the degradation behavior of individual components. These findings highlight the unique challenges and dynamics of biomass degradation under high-solid, normal-temperature conditions, addressing the importance of optimizing pretreatment parameters to maximize sugar yield.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yihang Tian
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
2
|
Miolo G, De Diana E, de Laureto PP, Realdon N, Rossi S, Rossi D. Relationships between surface tensiometry properties and fluorescence intensity of dark and light exposed monoclonal antibody Nivolumab/Opdivo® by using the contact angle method: A pilot study. J Pharm Sci 2025; 114:103823. [PMID: 40349925 DOI: 10.1016/j.xphs.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Monoclonal antibodies (mAbs) are a class of therapeutic proteins widely used for the treatment of different kinds of cancers and immune-mediated disorders. During their real-life, they encounter various stressors, such as light exposure, able to modify their physico-chemical properties both in their formulation and when diluted for patient administration. Several biochemical and biophysical analytical approaches are currently used to characterize the physico-chemical properties of mAbs, such as spectroscopic methods (i.e., UV absorption, fluorescence, near and far UV circular dichroism) for conformational studies, size exclusion chromatography, electrophoresis and dynamic light scattering for detecting aggregate formation, LC-MS for their chemical modifications. On these bases, our work is focused on the novel surface tension characterisation of one of these therapeutic mAbs, Nivolumab, in its formulation Opdivo® and after dilution and the relationship with classical fluorescence data. In particular, the mAb has been exposed to two different doses of simulated sunlight and the effect of the light stressor has been compared to the mAb kept in the dark. The application of Solid-like methodology, using the Rossi number as main surface tensiometry parameter, allowed us to demonstrate the close relationship between the physical, i.e., surface tension properties, and physico-chemical fluorescence emission of these big molecules.
Collapse
Affiliation(s)
- Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Elisabetta De Diana
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | | | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sergio Rossi
- Laboratoire sur écosystèmes terrestres borèaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, Canada
| | - Davide Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
3
|
Wang G, Shu Q, Sun J, Liu Y, Yang X, Lin H, Ding J, Zhang Y, Lan L, Sun H. Characteristics of acidic hydrothermal treatment for disintegration of spiramycin fermentation residue and degradation of residual antibiotics. BIORESOURCE TECHNOLOGY 2024; 409:131234. [PMID: 39117245 DOI: 10.1016/j.biortech.2024.131234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
To recycle the nutrients in spiramycin (SPM) fermentation residue (SFR) through biological methods, acid hydrothermal treatment (AHT) was employed as pretreatment to enhance SFR biodegradability. The results showed that the degradation rate of residual SPM in SFR reached 100% after 120 min at 100℃ and 0.30 M acid with a 30.5% and 89.7% increase in proteins and polysaccharides, respectively. The SPM degradation was faster at higher acidity and temperature. However, elevated SPM concentration and the presence of protein, humic acid, and polysaccharide inhibited SPM degradation. The disintegration of SFR was evidenced by changes in its microstructure and could be predicted through the release of dissolved organic matter. Eight major SPM intermediates were identified with lower mutagenicity and antibacterial activity testing against Staphylococcus aureus. These results demonstrate that AHT not only disintegrates SFR but also degrades the residual SPM antibiotics, which implies the possibility for practical applications.
Collapse
Affiliation(s)
- Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Quancheng Shu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jinzhi Sun
- Yantai Engineering & Technology College, Yantai 264006, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Hao Lin
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lijuan Lan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
4
|
Nguyenova HY, Hubalek Kalbacova M, Dendisova M, Sikorova M, Jarolimkova J, Kolska Z, Ulrychova L, Weber J, Reznickova A. Stability and biological response of PEGylated gold nanoparticles. Heliyon 2024; 10:e30601. [PMID: 38742054 PMCID: PMC11089375 DOI: 10.1016/j.heliyon.2024.e30601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.
Collapse
Affiliation(s)
- Hoang Yen Nguyenova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Marcela Dendisova
- Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Miriama Sikorova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
| | - Jaroslava Jarolimkova
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Zdenka Kolska
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Lucie Ulrychova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Alena Reznickova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| |
Collapse
|
5
|
De Diana E, Rizzotto E, Inciardi I, Menilli L, Coppola M, Polverino de Laureto P, Miolo G. Towards a better understanding of light-glucose induced modifications on the structure and biological activity of formulated Nivolumab. Int J Pharm 2024; 654:123926. [PMID: 38401872 DOI: 10.1016/j.ijpharm.2024.123926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
In the last years, monoclonal antibodies (mAbs) have rapidly escalated as biopharmaceuticals into cancer treatments, mainly for their target specificity accompanied by less side effects than the traditional chemotherapy, and stimulation of reliable long-term anti-tumoral responses. They are potentially unstable macromolecules under shaking, temperature fluctuations, humidity, and indoor and outdoor light exposure, all stressors occurring throughout their production, transport, storage, handling, and administration steps. The chemical and physical modifications of mAbs can lead not only to the loss of their bioactivity, but also to the enhancement of their immunogenicity with increasing risk of severe hypersensitivity reactions in treated patients because of aggregation. The photostability of Nivolumab, the active principle of Opdivo®, has been here studied. The chemical modifications detected by LC-MS/MS after the light stressor showed Trp and Met mono and double oxidations as primary damage induced by light on this mAb. The oxidations were stronger when the mAb was diluted in sterile glucose solution where 5-HMF, a major heat glucose degradation product, acted as singlet oxygen producer under irradiation. However, no significant changes in the mAb conformation were found. On the contrary, formation of a significant extent of aggregates has been detected after shining high simulated sunlight doses. This again took place particularly when Nivolumab was diluted in sterile glucose, thus raising a direct correlation between the aggregation and the oxidative processes. Finally, the biological activity under light stress assessed by a blockade assay test demonstrated the maintenance of the PD-1 target recognition even under high light doses and in glucose solution, in line with the preservation of the secondary and tertiary structures of the mAb. Based on our results, as sterile glucose is mostly used for children's therapies, special warnings, and precautions for healthcare professionals should be included for their use to the pediatric population.
Collapse
Affiliation(s)
- Elisabetta De Diana
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Elena Rizzotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Ilenia Inciardi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Luca Menilli
- IOV, Istituto Oncologico Veneto, IRCCS, Via Gattamelata, 64, 35 128 Padova, Italy
| | - Marina Coppola
- IOV, Istituto Oncologico Veneto, IRCCS, Via Gattamelata, 64, 35 128 Padova, Italy
| | - Patrizia Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy.
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
6
|
Jeong SH, Kim W, Kwon JH. Development of a new sterilization method for microalgae media using calcium hypochlorite as the sterilant. Bioprocess Biosyst Eng 2024; 47:393-401. [PMID: 38436717 DOI: 10.1007/s00449-024-02971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Calcium hypochlorite (Ca(ClO)2), which can be stably stored in powder form for a long period, is widely used as a disinfectant in various fields. A new sterilization process was developed in the present study, where a microalgal medium was sterilized using 0.02% Ca(ClO)2, followed by complete neutralization of the Ca(ClO)2 within 8 h through catalytic reaction of an MnCl2-Na2EDTA complex and a synergistic effect of glucose. When comparing the growth of Chlorella vulgaris in the autoclaved medium, a 2.65 times greater maximum cell growth was observed in cells grown in the medium prepared by treatment of Ca(ClO)2. This result indicates that denaturation of the medium by heat can hinder the growth of some microorganisms. In the case of cultivation of Euglena gracilis, successful culture growth was achieved without growth inhibition or contamination on a medium prepared in the same manner.
Collapse
Affiliation(s)
- Seong-Hun Jeong
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Food Science & Technology and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jong-Hee Kwon
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Department of Food Science & Technology and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
7
|
Pasternak TP, Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:327. [PMID: 38276784 PMCID: PMC10818547 DOI: 10.3390/plants13020327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide.
Collapse
Affiliation(s)
- Taras P. Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | |
Collapse
|
8
|
Blöbaum L, Täuber S, Grünberger A. Protocol to perform dynamic microfluidic single-cell cultivation of C. glutamicum. STAR Protoc 2023; 4:102436. [PMID: 37543944 PMCID: PMC10425941 DOI: 10.1016/j.xpro.2023.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Here, we present a protocol for the design, fabrication, and usage of a polydimethylsiloxane (PDMS)-based chip for dynamic microfluidic single-cell cultivation of Corynebacterium glutamicum. We describe steps for flow profile establishment and biological preparation. We then detail time-lapse imaging to observe reactions of C. glutamicum to repeated environmental changes in the range of seconds. This system can be adapted to other organisms with a cell wall and soluble non-gaseous environmental factors like nutrients. For complete details on the use and execution of this protocol, please refer to Täuber et al..1.
Collapse
Affiliation(s)
- Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany.
| | - Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, 33615 Bielefeld, Germany; Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
9
|
Khebli Z, Bouzerara F, Brihi N, Figoli A, Russo F, Galiano F, Chahredine S. Fabrication of a Zircon Microfiltration Membrane for Culture Medium Sterilization. MEMBRANES 2023; 13:399. [PMID: 37103826 PMCID: PMC10144774 DOI: 10.3390/membranes13040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin separation layer at the top. Tubular and flat disc supports were prepared from silica sand and calcite (natural raw materials), using extrusion and uniaxial pressing methods, respectively. Making use of the slip casting technique, the silica sand intermediate layer and the zircon top-layer were deposited on the supports, in this order. The particle size and the sintering temperature for each layer were optimized to achieve a suitable pore size for the deposition of the next layer. Morphology, microstructures, pore characteristics, strength and permeability were also studied. Filtration tests were conducted to optimize the permeation performance of the membrane. Experimental results show that the total porosity and average pore size of the porous ceramic supports sintered at different temperatures within the range (1150-1300 °C), and lie in the ranges of 44-52% and 5-30 μm, respectively. For the ZrSiO4 top-layer, after firing at 1190 °C, a typical average pore size of about 0.3 μm and a thickness of about 70 μm were measured, while water permeability is estimated to a value of 440 lh-1m-2bar-1. Finally, the optimized membranes were tested in the sterilization of a culture medium. Filtration results show the efficiency of the zircon-deposited membranes for bacteria removal; indeed, the growth medium was found to be free of all microorganisms.
Collapse
Affiliation(s)
- Zineb Khebli
- Laboratory of Condensed Matter Physics and Nanomaterials, Jijel University, Jijel 18000, Algeria
| | - Ferhat Bouzerara
- Laboratory of Condensed Matter Physics and Nanomaterials, Jijel University, Jijel 18000, Algeria
| | - Nourddine Brihi
- Laboratory of Condensed Matter Physics and Nanomaterials, Jijel University, Jijel 18000, Algeria
| | - Alberto Figoli
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87030 Rende, Italy
| | - Francesca Russo
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87030 Rende, Italy
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87030 Rende, Italy
| | - Sadek Chahredine
- Biotechnology, Environment and Health Laboratory, Jijel University, Jijel 18000, Algeria
| |
Collapse
|
10
|
Ahmadi M, Nasri Z, von Woedtke T, Wende K. d-Glucose Oxidation by Cold Atmospheric Plasma-Induced Reactive Species. ACS OMEGA 2022; 7:31983-31998. [PMID: 36119990 PMCID: PMC9475618 DOI: 10.1021/acsomega.2c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The glucose oxidation cascade is fascinating; although oxidation products have high economic value, they can manipulate the biological activity through posttranslational modification such as glycosylation of proteins, lipids, and nucleic acids. The concept of this work is based on the ability of reactive species induced by cold atmospheric plasma (CAP) in aqueous liquids and the corresponding gas-liquid interface to oxidize biomolecules under ambient conditions. Here, we report the oxidation of glucose by an argon-based dielectric barrier discharge plasma jet (kINPen) with a special emphasis on examining the reaction pathway to pinpoint the most prominent reactive species engaged in the observed oxidative transformation. Employing d-glucose and d-glucose-13C6 solutions and high-resolution mass spectrometry and ESI-tandem MS/MS spectrometry techniques, the occurrence of glucose oxidation products, for example, aldonic acids and aldaric acids, glucono- and glucaro-lactones, as well as less abundant sugar acids including ribonic acid, arabinuronic acid, oxoadipic acid, 3-deoxy-ribose, glutaconic acid, and glucic acid were surveyed. The findings provide deep insights into CAP chemistry, reflecting a switch of reactive species generation with the feed gas modulation (Ar or Ar/O2 with N2 curtain gas). Depending on the gas phase composition, a combination of oxygen-derived short-lived hydroxyl (•OH)/atomic oxygen [O(3P)] radicals was found responsible for the glucose oxidation cascade. The results further illustrate that the presence of carbohydrates in cell culture media, gel formulations (agar), or other liquid targets (juices) modulate the availability of CAP-generated species in vitro. In addition, a glycocalyx is attached to many mammalian proteins, which is essential for the respective physiologic role. It might be questioned if its oxidation plays a role in CAP activity.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Zahra Nasri
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Thomas von Woedtke
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- University
Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Walther-Rathenau-Straße 49A, Greifswald 17489, Germany
| | - Kristian Wende
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| |
Collapse
|
11
|
Fongaro B, Cian V, Gabaldo F, De Paoli G, Miolo G, Polverino de Laureto P. Managing antibody stability: effects of stressors on Ipilimumab from the commercial formulation to diluted solutions. Eur J Pharm Biopharm 2022; 176:54-74. [PMID: 35595030 DOI: 10.1016/j.ejpb.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022]
Abstract
The stability of the monoclonal antibody Ipilimumab, the active ingredient of Yervoy®, used for the treatment of different types of cancer, has been investigated. Shaking/temperature, light exposure and dilution, protein drug renowned stressors, were applied on a 30-45-day series of experiments to observe the physicochemical and biological behavior of the molecule. Ipilimumab demonstrated stability under shaking and heat up to 45 days, without any unfolding during the induced combined stressors. Under artificial sunlight, the mAb showed to be sensitive even under the minimum dose tested (720 kJ/m2) with formation of aggregates, particularly when diluted in glucose solution. The light-induced soluble aggregates were higher in the case of diluted samples irradiated with much higher light doses (10460 kJ/m2). The aggregation of Ipilimumab took place also by irradiating the non-diluted formulation, indicating that the excipients did not protect completely the drug from photodegradation. Amino acid oxidation and deamidation were found. Anyway, after irradiation with both light doses, soluble Ipilimumab maintained its typical β-sheets structure, and the tertiary structure was nearly maintained compared to the dark. As an additional stressor test, the effect of dilution on the formulation was monitored by using a saline solution (1 mg/mL Ipilimumab) applied during hospital infusion. After two days from dilution, the protein exhibited aggregation and chemical modifications including oxidation and deamidation. When stability conditions were compromised, the viability of human cell lines treated with the stressed formulation slight decreased suggesting low potential biological toxicity of the modified mAb. As this study has demonstrated the susceptibility of Ipilimumab to light, specific solutions, and excipients as well as the use of safe light in manufacturing, handling, and storage of this drug should be promoted. Moreover, the use of proper primary and secondary packaging should be indicated to avoid the detrimental effect of light on the mAb structure and efficacy. A detailed understanding of Ipilimumab physicochemical properties, integrity, and stability could assure the best storage and manipulation conditions for its safe and successful application in cancer therapy.
Collapse
Affiliation(s)
- Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy
| | - Valentina Cian
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy
| | - Francesca Gabaldo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy
| | - Giorgia De Paoli
- Molecular and Clinical Medicine, School of Medicine, University of Dundee Nethergate, Dundee, Scotland DD1 4HN, UK
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo, 5, 35131 Padova, Italy.
| | | |
Collapse
|