1
|
Fischer-Carvalho A, Taveira-Barbosa TC, Verjovski-Almeida S, Haeberlein S, Sena Amaral M. Antischistosomal Potential of Animal-Derived Natural Products and Compounds. Microorganisms 2025; 13:397. [PMID: 40005763 PMCID: PMC11858059 DOI: 10.3390/microorganisms13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects over 240 million people worldwide. Currently, praziquantel is the only drug recommended by the World Health Organization for treatment. However, cases of drug resistance have been reported, which indicates an urgent need for new therapeutics. In this context, natural compounds represent valuable sources of pharmacological substances. Plant-derived natural products have been greatly explored for their potential antischistosomal activity, while animal-derived compounds have received little attention. Recent advances in the biotechnology field allow the wide exploration of animal-derived compounds in drug discovery, which may represent a cost-effective option to find bioactive molecules also against Schistosoma mansoni and other parasites. This review highlights the research into animal-derived products and compounds that have already been tested against schistosomes. Phenotypic effects on schistosomes have been observed upon incubation with some of these substances, which may, therefore, represent possible candidates to be used in the development of new drugs. Overall, these studies advance the discovery of antischistosomal compounds by exploring a yet understudied natural resource. The present review also discusses the challenges of testing animal-derived products and provides examples of the experimental in vitro testing of different selected animal natural products against S. mansoni.
Collapse
Affiliation(s)
- Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
| | | | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Simone Haeberlein
- Biomedizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
| |
Collapse
|
2
|
Shoko R, Mazadza A. Computer-Aided Discovery of Abrus precatorius Compounds With Anti-Schistosomal Potential. Biomed Eng Comput Biol 2024; 15:11795972241294112. [PMID: 39530083 PMCID: PMC11552047 DOI: 10.1177/11795972241294112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Schistosomiasis, which causes over 200 000 deaths annually, has since the 1970s been controlled by praziquintel. The reliance on a single drug to combat schistosomiasis, and reports of laboratory resistance to the drug, has created an urgent need in the scientific community to develop new chemotherapies to complement or supplement praziquantel. Medicinal plants are a potential reservoir of compounds with schistosomicidal activity. In the current study, we carried out computer-aided screening of Abrus precatorius compounds to discover compounds with potential to inhibit Schistosoma mansoni purine nucleoside phosphorylase (SmPNP). Thus, 99 compounds retrieved from Lotus Natural Compounds Database were docked into the active site of SmPNP. The top-ranked compounds were subjected to Lipinski's druglikeness and toxicity risk predictions. Three lead compounds, abrusogenin, cirsimaritin and hispidulin, were identified as having high binding affinities, favourable interactions with SmPNP active site residues and good toxicity risk prediction results. Molecular dynamics (MD) simulations were used to assess the stability of the interactions of these lead compounds with SmPNP. Collectively, analyses of the MD trajectories confirms that the lead compounds bound and interacted stably with active site residues of SmPNP. We conclude that abrusogenin, cirsimaritin and hispidulin could serve as hit compounds for the development of new antischistosomal drugs, based on plant-derived natural products. However, experimental studies are required to further evaluate the potentials of these compounds as possible therapeutics against schistosomiasis.
Collapse
Affiliation(s)
- Ryman Shoko
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Allen Mazadza
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
3
|
Moreira-Filho JT, Neves BJ, Cajas RA, Moraes JD, Andrade CH. Artificial intelligence-guided approach for efficient virtual screening of hits against Schistosoma mansoni. Future Med Chem 2023; 15:2033-2050. [PMID: 37937522 DOI: 10.4155/fmc-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background: The impact of schistosomiasis, which affects over 230 million people, emphasizes the urgency of developing new antischistosomal drugs. Artificial intelligence is vital in accelerating the drug discovery process. Methodology & results: We developed classification and regression machine learning models to predict the schistosomicidal activity of compounds not experimentally tested. The prioritized compounds were tested on schistosomula and adult stages of Schistosoma mansoni. Four compounds demonstrated significant activity against schistosomula, with 50% effective concentration values ranging from 9.8 to 32.5 μM, while exhibiting no toxicity in animal and human cell lines. Conclusion: These findings represent a significant step forward in the discovery of antischistosomal drugs. Further optimization of these active compounds can pave the way for their progression into preclinical studies.
Collapse
Affiliation(s)
- José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Rayssa Araujo Cajas
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Azevedo CM, Meira CS, da Silva JW, Moura DMN, de Oliveira SA, da Costa CJ, Santos EDS, Soares MBP. Therapeutic Potential of Natural Products in the Treatment of Schistosomiasis. Molecules 2023; 28:6807. [PMID: 37836650 PMCID: PMC10574020 DOI: 10.3390/molecules28196807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.
Collapse
Affiliation(s)
- Carine Machado Azevedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
| | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Jaqueline Wang da Silva
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Danielle Maria Nascimento Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Sheilla Andrade de Oliveira
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Cícero Jádson da Costa
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| |
Collapse
|
5
|
Gomes BF, Senger MR, Moreira-Filho JT, de Vasconcellos FJ, Dantas RF, Owens R, Andrade CH, Neves BJ, Silva-Junior FP. Discovery of new Schistosoma mansoni aspartyl protease inhibitors by structure-based virtual screening. Mem Inst Oswaldo Cruz 2023; 118:e230031. [PMID: 37672425 PMCID: PMC10481938 DOI: 10.1590/0074-02760230031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 μM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 μM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.
Collapse
Affiliation(s)
- Bárbara Figueira Gomes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - José Teófilo Moreira-Filho
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Planejamento de Fármacos e Modelagem Molecular, Goiânia, GO, Brasil
| | - Fabio Jorge de Vasconcellos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Raymond Owens
- University of Oxford and Rosalind Franklin Institute, Oxfordshire, UK
| | - Carolina Horta Andrade
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Planejamento de Fármacos e Modelagem Molecular, Goiânia, GO, Brasil
| | - Bruno Junior Neves
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Quimioinformática, Goiânia, GO, Brasil
| | - Floriano Paes Silva-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
6
|
Zhong Z, Li H, Li Z, Cao J, Wang C, Luo Z, Wang B, Zhuang J, Han Q, Li A. Inhibiting thioredoxin glutathione reductase is a promising approach to controlling Cryptocaryon irritans infection in fish. Vet Parasitol 2023; 320:109972. [PMID: 37385103 DOI: 10.1016/j.vetpar.2023.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Marine cultured fish often suffer from Cryptocaryon irritans infection, which causes enormous mortality. C. irritans is resistant to oxidative damage induced by zinc. To develop an effective drug to control the parasite, a putative thioredoxin glutathione reductase (CiTGR) from C. irritans was cloned and characterized. CiTGR was designed as a target to screen for inhibitors by molecular docking. The selected inhibitors were tested both in vitro and in vivo. The results showed that CiTGR is located in the nucleus of the parasite, possesses a common pyridine-oxidoreductases redox active center, and lacks a glutaredoxin active site. Recombinant CiTGR exhibited high TrxR activity but low glutathione reductase activity. Shogaol was found to significantly suppress TrxR activity and enhance toxicity of zinc on C. irritans (P < 0.05). The abundance of C. irritans on the fish body decreased significantly after oral administration of shogaol (P < 0.05). These results implied that CiTGR could be used to screen for drugs that weaken the resistance of C. irritans to oxidative stress, which is critical for controlling the parasite in fish. This paper deepens the understanding of the interaction between ciliated parasites and oxidative stress.
Collapse
Affiliation(s)
- Zhihong Zhong
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
7
|
Beutler M, Harnischfeger J, Weber MHW, Hahnel SR, Quack T, Blohm A, Ueberall ME, Timm T, Lochnit G, Rennar GA, Gallinger TL, Houhou H, Rahlfs S, Falcone FH, Becker K, Schlitzer M, Haeberlein S, Czermak P, Salzig D, Grevelding CG. Identification and characterisation of the tegument-expressed aldehyde dehydrogenase SmALDH_312 of Schistosoma mansoni, a target of disulfiram. Eur J Med Chem 2023; 251:115179. [PMID: 36948075 DOI: 10.1016/j.ejmech.2023.115179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Schistosomiasis is an infectious disease caused by blood flukes of the genus Schistosoma and affects approximately 200 million people worldwide. Since Praziquantel (PZQ) is the only drug for schistosomiasis, alternatives are needed. By a biochemical approach, we identified a tegumentally expressed aldehyde dehydrogenase (ALDH) of S. mansoni, SmALDH_312. Molecular analyses of adult parasites showed Smaldh_312 transcripts in both genders and different tissues. Physiological and cell-biological experiments exhibited detrimental effects of the drug disulfiram (DSF), a known ALDH inhibitor, on larval and adult schistosomes in vitro. DSF also reduced stem-cell proliferation and caused severe tegument damage in treated worms. In silico-modelling of SmALDH_312 and docking analyses predicted DSF binding, which we finally confirmed by enzyme assays with recombinant SmALDH_312. Furthermore, we identified compounds of the Medicine for Malaria Venture (MMV) pathogen box inhibiting SmALDH_312 activity. Our findings represent a promising starting point for further development towards new drugs for schistosomiasis.
Collapse
Affiliation(s)
- Mandy Beutler
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Julie Harnischfeger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Michael H W Weber
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Thomas Quack
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Monique E Ueberall
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Germany
| | - Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Hicham Houhou
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Stefan Rahlfs
- Institute for Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University, Germany
| | - Franco H Falcone
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Katja Becker
- Institute for Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University, Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | | |
Collapse
|
8
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|