1
|
Chen JF, Ye SZ, Wang KJ, Meng XY, Yang BB, Wu KR, Ma Q. Long non-coding RNA OSTM1-AS1 promotes renal cell carcinoma progression by sponging miR-491-5p and upregulating MMP-9. Sci Rep 2025; 15:359. [PMID: 39747324 PMCID: PMC11696353 DOI: 10.1038/s41598-024-83154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown. Here, we examined OSTM1-AS1 functional roles and mechanism in RCC development. OSTM1-AS1 expression was significantly highly expressed among RCC tissue specimens and cell lines. Functionally, OSTM1-AS1 knockdown significantly suppressed cell proliferation, migration along with metastasis of RCC cells. Mechanistically, miR-491-5p was targeted via OSTM1-AS1, and down-regulation of miR-491-5p reversed OSTM1-AS1 knockdown impact on RCC migration and invasion. MMP-9 was targeted via miR-491-5p, and MMP-9 overexpression reversed miR-491-5p or OSTM1-AS1 knockdown impact on cell migration and invasion. MMP-9 abundance was decreased by OSTM1-AS1 silence, that was reduced by miR-491-5p deficiency. Importantly, our investigation revealed that OSTM1-AS1 has the ability to interact with miR-491-5p, thereby increasing the MMP-9 expression. The in vivo trial demonstrated that OSTM1-AS1 suppression resulted in tumor growth inhibition among nude mice. In summary, our findings indicate, for the first time, at least to the best of our knowledge, that OSTM1-AS1 serves as an oncogene among RCC by promoting proliferation, invasion, and metastasis through its targeting of the miR-491-5p/MMP9 axis. Therefore, this axis could represent a promising alternative therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Jun-Feng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Bin-Bin Yang
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke Rong Wu
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Yi-Huan Genitourinary Cancer Group, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
2
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Nakka P, Jassi C, Chen MC, Liu YS, Liu JY, Yeh CM, Li CC, Chang YC, Kuo WW, Huang CY. Sensitization of hepatocellular carcinoma cells to HDACi is regulated through hsa-miR-342-5p/CFL1. Cancer Cell Int 2024; 24:291. [PMID: 39152428 PMCID: PMC11328471 DOI: 10.1186/s12935-024-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/13/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Increased prevalence of hepatocellular carcinoma (HCC) remains a global health challenge. HCC chemoresistance is a clinical obstacle for its management. Aberrant miRNA expression is a hallmark for both cancer progression and drug resistance. However, it is unclear which miRNAs are involved in HCC chemoresistance. METHODS MicroRNA microarray analysis revealed a differential expression profile of microRNAs between the hepatocellular carcinoma HA22T cell line and the HDACi-R cell line, which was validated by quantitative real-time PCR (qRT-PCR). To determine the biological function of miR-342-5p and the mechanism of the microRNA-342-5p/CFL1 axis in hepatocellular carcinoma HDACi resistance, loss- and gain-of-function studies were conducted in vitro. RESULTS Here we demonstrated the molecular mechanism of histone deacetylase inhibitor (HDACi) resistance in HCC. Differential miRNA expression analysis showed significant down regulation of miR-342-5p in HDACi-R cells than in parental HA22T cells. Mimics of miR-342-5p enhanced apoptosis through upregulation of Bax, cyto-C, cleaved-caspase-3 expressions with concomitant decline in anti-apoptotic protein (Bcl-2) in HDACi-R cells. Although HDACi did not increase cell viability of HDACi-R, overexpression of miR-342-5p decreased cofilin-1 expression, upregulated reactive oxygen species (ROS) mediated apoptosis, and sensitized HDACi-R to HDACi in a dose-dependent manner. CONCLUSION Our findings demonstrated the critical role of miR-342-5p in HDACi resistance of HCC and that this mechanism might be attributed to miR-342-5p/cofilin-1 regulation.
Collapse
Affiliation(s)
- Parvathi Nakka
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
4
|
Cai L, Xu L, Shen K, Wang Q, Ni R, Xu X, Ma X. Sophorae tonkinensis radix polysaccharide attenuates acetaminophen-induced liver injury by regulating the miR-140-5p-related antioxidant mechanism. J Tradit Complement Med 2024; 14:467-476. [PMID: 39035693 PMCID: PMC11259709 DOI: 10.1016/j.jtcme.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 07/23/2024] Open
Abstract
STRP1, a polysaccharide active ingredient isolated from the traditional Chinese medicine Sophorae tonkinensis radix, has demonstrated a protective effect against acetaminophen (APAP)-induced liver injury (AILI). The underlying molecular mechanism was investigated in this study. Here, an acute liver damage mouse model was generated by APAP (400 mg/kg) and used to identify the protective effect of STRP1 (200 mg/kg) on mouse livers. In vitro cell experiments were used to further verify the related signaling pathways. Initially, in our study, STRP1 treatment reduced APAP-induced liver injury by decreasing aminotransferase activity and cell apoptosis and increasing cell proliferation. Furthermore, STRP1 treatment significantly increased Nrf2 expression and alleviated oxidative stress caused by reactive oxygen species in AILI. Based on bioinformatics and experimental studies, miR-140-5p was identified and found to be reduced by STRP1, increasing Nrf2 expression. Additionally, Nrf2 played an important role in the protective impact of STRP1-suppressed miR-140-5p expression. Generally, these results showed that STRP1-mediated suppression of miR-140-5p expression mitigates AILI by activating the Nrf2-mediated Nrf2-Keap1 pathway. This study revealed that STRP1 might be a potential treatment agent for AILI.
Collapse
Affiliation(s)
- Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, PR China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Qin Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Ronghua Ni
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| |
Collapse
|
5
|
Liu X, Wang N, He Z, Chen C, Ma J, Liu X, Deng S, Xie L. Diallyl trisulfide inhibits osteosarcoma 143B cell migration, invasion and EMT by inducing autophagy. Heliyon 2024; 10:e26681. [PMID: 38434350 PMCID: PMC10907726 DOI: 10.1016/j.heliyon.2024.e26681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Background Diallyl trisulfide (DATS), a compound derived from garlic, has been demonstrated its anti-cancer properties. While it has been shown to inhibit the expression of epidermal growth factor receptor (EGFR) in various cancers, its effects on osteosarcoma (OS) cells remain unclear. This study aimed to investigate the impacts of DATS on OS cells growth, migration, invasion, epithelial-mesenchymal transition (EMT) and autophagy, as well as its underlying mechanisms which was involving in the EGFR/PI3K/AKT/mTOR pathway. Methods In this study, human osteosarcoma cells (143B) were treated with different concentrations of DATS (10, 50, 100 and 200 μM) for 24 and 48 h, respectively. Cell viability was measured using CCK8, the half lethal concentration was selected for the following experiments. Wound healing and transwell assays were performed to evaluate migration and invasion abilities, while flow cytometry was used to measure apoptosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and confocal imaging were employed to analyze the related mRNA and protein expression levels of epithelial-mesenchymal transition (EMT), EGFR/Phosphoinositide 3 kinase (PI3K)/AKT/Mammalian target of rapamycin (mTOR) signaling pathway and autophagy-related markers. Results DATS significantly inhibited proliferation, migration and EMT in osteosarcoma cells. Additionally, DATS promoted cell apoptosis and induced autophagy, which could be rescued by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, DATS treatment led to the inactivation of the EGFR/PI3K/AKT/mTOR pathway in osteosarcoma cells. Conclusions This study demonstrated that DATS inhibited osteosarcoma cell growth, migration and EMT, but inducing apoptosis and autophagy. These effects were mediated by the inactivation of the EGFR/PI3K/AKT/mTOR signaling pathway. These findings suggested that DATS could serve as a potential therapeutic agent for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiyu Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei He
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Chen
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng City, China
| | - Jun Ma
- Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Xin Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan Deng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Xie
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Chen L, Zhou Y, Weng Z, Liu S, Li T, Wang Y, Yang Y, Liu H, Huang W. Anti-cancer targets and molecular mechanisms of formononetin in treating osteosarcoma based on network pharmacology. Aging (Albany NY) 2023; 15:11489-11507. [PMID: 37870753 PMCID: PMC10637808 DOI: 10.18632/aging.205139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Osteosarcoma (OS) is a multifactorial bone malignancy that accounts for most cancers in children and adolescents. Formononetin has been proven to exhibit various pharmacological effects including anti-tumor, anti-obesity, anti-inflammation, and neuroprotective effects. Few studies have examined the pharmacological activities of formononetin in OS treatment, but the mechanism has not yet been completely elucidated. Network pharmacology is a new method based on the theory of system biology for analyzing the network of biological systems and selecting specific signal nodes for multi-target drug molecular design. Here, we used network pharmacology to explore the possible mechanism of formononetin in OS treatment. Human OS cell line MG63 was processed with four concentrations (0, 2, 5, 8 μg/mL) of formononetin. Subsequently, an MTT assay was performed to test cell proliferation and a scratch test was used to evaluate the migration ability of cancer cells. Caspase-3, p53, p21, and bcl-2 expression levels incubated with different concentrations of formononetin in MG63 cells were determined using Western blotting. After treated with formononetin for 48 h, MG63 cells exhibited marked apoptosis. The results revealed that certain concentrations of formononetin significantly exerted inhibitory effects on MG63 cell proliferation. Furthermore, formononetin decreased the bcl-2 level in MG63 cells but increased caspase-3, p21, and p53 levels in a concentration-dependent manner. Additionally, formononetin suppressed the expression of SATB2. Therefore, formononetin could dose-dependently inhibit MG63 cell proliferation and induce apparent cell apoptosis, providing a candidate treatment for OS, whereas SATB2 could be a potential prognostic biomarker for screening OS and therapeutic target of formononetin.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Science and Education, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Zhou
- Department of Science and Education, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zheng Weng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanfang Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial, General Hospital, Guangzhou, Guangdong, China
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Veys C, Boulouard F, Benmoussa A, Jammes M, Brotin E, Rédini F, Poulain L, Gruchy N, Denoyelle C, Legendre F, Galera P. MiR-4270 acts as a tumor suppressor by directly targeting Bcl-xL in human osteosarcoma cells. Front Oncol 2023; 13:1220459. [PMID: 37719019 PMCID: PMC10501397 DOI: 10.3389/fonc.2023.1220459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
Chondrosarcomas and osteosarcomas are malignant bone tumors with a poor prognosis when unresectable or metastasized. Moreover, radiotherapy and chemotherapy could be ineffective. MiRNAs represent an alternative therapeutic approach. Based on high-throughput functional screening, we identified four miRNAs with a potential antiproliferative effect on SW1353 chondrosarcoma cells. Individual functional validations were then performed in SW1353 cells, as well as in three osteosarcoma cell lines. The antiproliferative and cytotoxic effects of miRNAs were evaluated in comparison with a positive control, miR-342-5p. The cytotoxic effect of four selected miRNAs was not confirmed on SW1353 cells, but we unambiguously revealed that miR-4270 had a potent cytotoxic effect on HOS and MG-63 osteosarcoma cell lines, but not on SaOS-2 cell line. Furthermore, like miR-342-5p, miR-4270 induced apoptosis in these two cell lines. In addition, we provided the first report of Bcl-xL as a direct target of miR-4270. MiR-4270 also decreased the expression of the anti-apoptotic protein Mcl-1, and increased the expression of the pro-apoptotic protein Bak. Our findings demonstrated that miR-4270 has tumor suppressive activity in osteosarcoma cells, particularly through Bcl-xL downregulation.
Collapse
Affiliation(s)
- Clément Veys
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
| | - Flavie Boulouard
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, Caen, France
| | - Abderrahim Benmoussa
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Research Center of the UHC Sainte-Justine and Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Manon Jammes
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
| | - Emilie Brotin
- Normandie Univ., UNICAEN, Federative Structure Normandie Oncology, US Platon, ImpedanCELL Platform, Caen, France
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | - Françoise Rédini
- UMR 1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, INSERM, Nantes University, Nantes, France
| | - Laurent Poulain
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | - Nicolas Gruchy
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, Caen, France
| | - Christophe Denoyelle
- Normandie Univ., UNICAEN, Federative Structure Normandie Oncology, US Platon, ImpedanCELL Platform, Caen, France
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | | | | |
Collapse
|
8
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Zhu H, Zhang Y, Zhu Y. MiR-342-5p protects neurons from cerebral ischemia induced-apoptosis through regulation of Akt/NF-κB pathways by targeting CCAR2. J Stroke Cerebrovasc Dis 2023; 32:106901. [PMID: 36434857 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Ischemic stroke causes high morbidity, mortality and health burden in the world. MiR-342-5p was associated with Alzheimer's disease and cardio-protection. Herein, we aimed to reveal effects of miR-342-5p on cerebral ischemia injury as well as novel targets for stroke. MATERIALS AND METHODS AgomiR-342-5p was intracerebroventricularly injected into the middle cerebral artery occlusion (MCAO) mouse models to evaluate functions of miR-342-5p on cerebral ischemia. RT-qPCR and western blot assays were used to evaluate genes expression. Oxygen-glucose deprivation (OGD) was used as an in vitro model for ischemia. Viability and apoptosis ratio of neurons was evaluated by CCK-8, LDH release detection, and flow cytometry. The potential targets of miR-342-5p were predicted by Targetscan, and their interaction was confirmed by luciferase assay. RESULTS The intervention of miR-342-5p effectively attenuated ischemic injury in MCAO mice. MiR-342-5p overexpression could protect neurons against OGD-induced injury, as revealed by increased cell viability and BCL2 expression, and decreased LDH release, apoptosis ratio, and BAX expression in OGD-induced neurons. Mechanically, miR-342-5p could directly bound with CCAR2 to inhibit its expression. Overexpressing CARR2 aggravated the OGD-induced injury of neurons, which was partly restrained by overexpressing miR-342-5p reversed. Furthermore, miR-342-5p/CARR2 axis regulates Akt/NF-κB signaling pathway in vitro as well as in vivo cerebral ischemia models. CONCLUSIONS MiR-342-5p inhibited neuron apoptosis by regulating Akt/NF-kB signaling pathway via CCAR2 suppression. Our findings revealed the neuroprotection of miR-342-5p in cerebral ischemia.
Collapse
Affiliation(s)
- Haochun Zhu
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| | - Yanhua Zhang
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| | - Yanling Zhu
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| |
Collapse
|