1
|
Wang Y, Zheng L, Zi R, Niu Y, Yang S, Hu D, Dong J. Diastereoselective three-component 1,3-dipolar cycloaddition: concise synthesis of functionalized tetrahydrocarboline-fused spirooxindoles. Org Biomol Chem 2025; 23:2941-2953. [PMID: 39997514 DOI: 10.1039/d4ob02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
A novel diastereoselective and regioselective three-component 1,3-dipolar cycloaddition for the concise synthesis of functionalized tetrahydrocarboline-containing spirooxindoles is reported. Diverse 5-(2-nitroaryl)-2,4-dienones were ingeniously employed as dipolarophiles in 1,3-dipolar cycloaddition, affording two types of isomerized tetrahydrocarboline-fused spirooxindoles in 61-93% yields with excellent diastereoselectivities (up to >99 : 1 dr). This reaction not only expands the scope of dipolarophiles in 1,3-dipolar cycloadditions but also enhances the structural and functional diversity of spirooxindoles.
Collapse
Affiliation(s)
- Yongchao Wang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P.R. China.
| | - Lihua Zheng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P.R. China.
| | - Rongmei Zi
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P.R. China.
| | - Yanqin Niu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P.R. China.
| | - Shuyuan Yang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P.R. China.
| | - Donghua Hu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P.R. China.
| | - Jianwei Dong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China.
| |
Collapse
|
2
|
Pal A, De S, Thakur A. Cobalt-based Photocatalysis: From Fundamental Principles to Applications in the Generation of C-X (X=C, O, N, H, Si) Bond. Chemistry 2025; 31:e202403667. [PMID: 39838597 DOI: 10.1002/chem.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Over the past few decades, the merger of photocatalysis and transition metal-based catalysis or self-photoexcitation of transition metals has emerged as a useful tool in organic transformations. In this context, cobalt-based systems have attracted significant attention as sustainable alternatives to the widely explored platinum group heavy metals (iridium, rhodium, ruthenium) for photocatalytic chemical transformations. This review encompasses the basic types of cobalt-based homogeneous photocatalytic systems, their working principles, and the recent developments (2018-2024) in C-X (X=C, N, O, H, Si) bond formations. Noteworthy to mention that cobalt-based heterogeneous photocatalysis is beyond the scope of the present review. An elaborate presentation on the mechanistic intricacies of cobalt-based photocatalysis, without any external photocatalyst, and cobalt-based dual organophotoredox catalysis have been provided in this comprehensive review, excluding the dual-metal photoredox catalysis. To the best of our knowledge, this is the only contemporary review encompassing the aforementioned two major types of cobalt-based photocatalysis, in general synthetic chemistry, covering all types of C-X bond formations spanning a range of the last six years.
Collapse
Affiliation(s)
- Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata-, 700032, West Bengal, India
| | - Soumita De
- Department of Chemistry, Jadavpur University, Kolkata-, 700032, West Bengal, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata-, 700032, West Bengal, India
| |
Collapse
|
3
|
Mathew GE, Herrera-Acevedo C, Scotti MT, Kumar S, Berisha A, Kaya S, Alfarraj S, Ansari MJ, Dhyani A, Sudevan ST, Kumar M, Mathew B. 3D-QSAR, Pharmacophore Modeling, ADMET and DFT Studies of Halogenated Conjugated Dienones as Potent MAO-B Inhibitors. Curr Comput Aided Drug Des 2025; 21:179-193. [PMID: 39129167 DOI: 10.2174/0115734099307062240801053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION It has been reported that the extension of conjugation in chalcone scaffolds considerably enhanced the potency, selectivity, reversibility, and competitive mode of MAO-B inhibition. In this study, using the experimental results of IC50 values of fifteen halogenated conjugated dienone derivatives (MK1-MK15) against MAO-B, we developed a 3DQSAR model. METHODS Further, we created a 3D pharmacophore model in active compounds in the series. The built model selected three variables (G2U, RDF115m, RDF155m) among the 653 AlvaDesc molecular descriptors, with a r2 value of 0.87 and a Q2 cv for cross-validation equal to 0.82. The three variables were mostly associated with the direction of symmetry and the likelihood of discovering massive atoms at great distances. The evaluated molecules exhibited a good correlation between experimental and predicted data, indicating that the IC50 value of the structure MK2 was related to the interatomic distances of 15.5 Å between bromine and chloro substituents. Furthermore, the molecules in the series with the highest activity were those with enhanced second component symmetry directional index from the 3D representation, which included the structures MK5 and MK6. RESULTS Additionally, a pharmacophore hypothesis was developed and validated using the decoy Schrodinger dataset, with an ROC score of 0.87 and an HHRR 1 fitness score that ranged from 2.783 to 3.00. The MK series exhibited a significant blood-brain barrier (BBB) permeability, according to exploratory analyses and in silico projections, and almost all analogues were expected to have strong BBB permeability. CONCLUSION Further DFT research revealed that electrostatics were important in the interactions with MAO-B.
Collapse
Affiliation(s)
- Githa Elizabeth Mathew
- Department of Pharmacology, Lisie College of Pharmacy, Vennala, 682028, Kerala, India
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be a University), Salem, 636308, Tamilnadu, India
| | - Chonny Herrera-Acevedo
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000, Prishtina, Kosovo
| | - Savaş Kaya
- Department of Pharmacy Health Services Vocational School, Sivas Cumhuriyet University, 58140, Sivas Turkey
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Archana Dhyani
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Mohan Kumar
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be a University), Salem, 636308, Tamilnadu, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| |
Collapse
|
4
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
5
|
De Angelis M, De Filippis B, Balaha M, Giampietro L, Miteva MT, De Chiara G, Palamara AT, Nencioni L, Mollica A. Nitrostilbenes: Synthesis and Biological Evaluation as Potential Anti-Influenza Virus Agents. Pharmaceuticals (Basel) 2022; 15:ph15091061. [PMID: 36145282 PMCID: PMC9505218 DOI: 10.3390/ph15091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.
Collapse
Affiliation(s)
- Marta De Angelis
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (B.D.F.); (L.N.); Tel.: +39-0871-3479-433-535 (B.D.F.); +39-0649-914-608 (L.N.)
| | - Marwa Balaha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Mariya Timotey Miteva
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, Italian National Institute of Health, 00161 Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (B.D.F.); (L.N.); Tel.: +39-0871-3479-433-535 (B.D.F.); +39-0649-914-608 (L.N.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
6
|
Synthesis of 2,5-disubstituted pyrazolyl-1,3,4-oxadiazoles by the Huisgen reaction. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|