1
|
Michałek S, Maj AM, Gurba-Bryśkiewicz L, Maruszak W, Wiśniewski K, Zagozda M, Stypik M, Dubiel K, Wieczorek M. Development of the telescoped flow Pd-catalyzed aerobic alcohol oxidation/reductive amination sequence in the synthesis of new phosphatidylinositide 3-kinase inhibitor (CPL302415). RSC Adv 2024; 14:28516-28523. [PMID: 39247513 PMCID: PMC11378027 DOI: 10.1039/d4ra04923c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Herein, we describe a two-step sequential flow synthesis: Pd-catalyzed aerobic oxidation to an aldehyde 2, which is then converted by reductive amination in H-Cube® PRO into CPL302415 (3). CPL302415 is our new PI3Kδ inhibitor, which is now under evaluation for the treatment of systemic lupus erythematosus. The process was optimized using the DoE approach and generalized to other biologically active derivatives of CPL302415.
Collapse
Affiliation(s)
| | - Anna M Maj
- Celon Pharma S.A. ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | | | | | | | - Marcin Zagozda
- Celon Pharma S.A. ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | - Mariola Stypik
- Celon Pharma S.A. ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | | | | |
Collapse
|
2
|
Pietruś W, Stypik M, Zagozda M, Banach M, Gurba-Bryśkiewicz L, Maruszak W, Leniak A, Kurczab R, Ochal Z, Dubiel K, Wieczorek M. Tuning the Biological Activity of PI3K δ Inhibitor by the Introduction of a Fluorine Atom Using the Computational Workflow. Molecules 2023; 28:3531. [PMID: 37110764 PMCID: PMC10145010 DOI: 10.3390/molecules28083531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As a member of the class I PI3K family, phosphoinositide 3-kinase δ (PI3Kδ) is an important signaling biomolecule that controls immune cell differentiation, proliferation, migration, and survival. It also represents a potential and promising therapeutic approach for the management of numerous inflammatory and autoimmune diseases. We designed and assessed the biological activity of new fluorinated analogues of CPL302415, taking into account the therapeutic potential of our selective PI3K inhibitor and fluorine introduction as one of the most frequently used modifications of a lead compound to further improve its biological activity. In this paper, we compare and evaluate the accuracy of our previously described and validated in silico workflow with that of the standard (rigid) molecular docking approach. The findings demonstrated that a properly fitted catalytic (binding) pocket for our chemical cores at the induced-fit docking (IFD) and molecular dynamics (MD) stages, along with QM-derived atomic charges, can be used for activity prediction to better distinguish between active and inactive molecules. Moreover, the standard approach seems to be insufficient to score the halogenated derivatives due to the fixed atomic charges, which do not consider the response and indictive effects caused by fluorine. The proposed computational workflow provides a computational tool for the rational design of novel halogenated drugs.
Collapse
Affiliation(s)
- Wojciech Pietruś
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
- Celon Pharma S.A., ul. Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Mariola Stypik
- Celon Pharma S.A., ul. Marymoncka 15, 05-152 Kazuń Nowy, Poland
- Faculty of Chemistry, Warsaw University of Technology, ul. Nowakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Zagozda
- Celon Pharma S.A., ul. Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Martyna Banach
- Celon Pharma S.A., ul. Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | | | | | | | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, ul. Nowakowskiego 3, 00-664 Warsaw, Poland
| | | | | |
Collapse
|
3
|
Al Hasan M, Sabirianov M, Redwine G, Goettsch K, Yang SX, Zhong HA. Binding and selectivity studies of phosphatidylinositol 3-kinase (PI3K) inhibitors. J Mol Graph Model 2023; 121:108433. [PMID: 36812742 DOI: 10.1016/j.jmgm.2023.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Overexpression of the Phosphatidylinositol 3-kinase (PI3K) proteins have been observed in cancer cells. Targeting the phosphatidylinositol 3-kinase (PI3K) signaling transduction pathway by inhibition of the PI3K substrate recognition sites has been proved to be an effective approach to block cancer progression. Many PI3K inhibitors have been developed. Seven drugs have been approved by the US FDA with a mechanism of targeting the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. In this study, we used docking tools to investigate selective binding of ligands toward four different subtypes of PI3Ks (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ). The affinity predicted from both the Glide dock and the Movable-Type (MT)-based free energy calculations agreed well with the experimental data. The validation of our predicted methods with a large dataset of 147 ligands showed very small mean errors. We identified residues that may dictate the subtype-specific binding. Particularly, residues Asp964, Ser806, Lys890 and Thr886 of PI3Kγ might be utilized for PI3Kγ-selective inhibitor design. Residues Val828, Trp760, Glu826 and Tyr813 may be important for PI3Kδ-selective inhibitor binding.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Matthew Sabirianov
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Grace Redwine
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Kaitlin Goettsch
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Stephen X Yang
- Westlake High School, 100 Lakeview Canyon Rd, Thousand Oaks, CA, 91362, USA
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA.
| |
Collapse
|
4
|
Michałek S, Gurba-Bryśkiewicz L, Maruszak W, Zagozda M, Maj AM, Ochal Z, Dubiel K, Wieczorek M. The design of experiments (DoE) in optimization of an aerobic flow Pd-catalyzed oxidation of alcohol towards an important aldehyde precursor in the synthesis of phosphatidylinositide 3-kinase inhibitor (CPL302415). RSC Adv 2022; 12:33605-33611. [PMID: 36505705 PMCID: PMC9682622 DOI: 10.1039/d2ra07003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we describe the development of a green, scalable flow Pd-catalyzed aerobic oxidation for the key step in the synthesis of CPL302415, which is a new PI3Kδ inhibitor. Applying this environmental-friendly, sustainable catalytic oxidation we significantly increased product yield (up to 84%) and by eliminating of workup step, we improved the waste index and E factor (up to 0.13) in comparison with the stoichiometric synthesis. The process was optimized by using the DoE approach.
Collapse
Affiliation(s)
- Stanisław Michałek
- Celon Pharma S.A. Ul. Marymoncka 15 05-152 Kazuń Nowy Poland
- Faculty of Chemistry, Warsaw University of Technology Ul. Noakowskiego 3 00-664 Warsaw Poland
| | | | | | - Marcin Zagozda
- Celon Pharma S.A. Ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | - Anna M Maj
- Celon Pharma S.A. Ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology Ul. Noakowskiego 3 00-664 Warsaw Poland
| | | | | |
Collapse
|
5
|
Design, Synthesis, and Development of Pyrazolo[1,5-a]pyrimidine Derivatives as a Novel Series of Selective PI3Kδ Inhibitors: Part II—Benzimidazole Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15080927. [PMID: 36015075 PMCID: PMC9415947 DOI: 10.3390/ph15080927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is the family of lipid kinases participating in vital cellular processes such as cell proliferation, growth, migration, or cytokines production. Due to the high expression of these proteins in many human cells and their involvement in metabolism regulation, normal embryogenesis, or maintaining glucose homeostasis, the inhibition of PI3K (especially the first class which contains four subunits: α, β, γ, δ) is considered to be a promising therapeutic strategy for the treatment of inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE) or multiple sclerosis. In this work, we synthesized a library of benzimidazole derivatives of pyrazolo[1,5-a]pyrimidine representing a collection of new, potent, active, and selective inhibitors of PI3Kδ, displaying IC50 values ranging from 1.892 to 0.018 μM. Among all compounds obtained, CPL302415 (6) showed the highest activity (IC50 value of 18 nM for PI3Kδ), good selectivity (for PI3Kδ relative to other PI3K isoforms: PI3Kα/δ = 79; PI3Kβ/δ = 1415; PI3Kγ/δ = 939), and promising physicochemical properties. As a lead compound synthesized on a relatively large scale, this structure is considered a potential future candidate for clinical trials in SLE treatment.
Collapse
|