1
|
Hvass L, Müller M, Staudt M, García-Vázquez R, Gustavsson TK, Shalgunov V, Jørgensen JT, Battisti UM, Herth MM, Kjaer A. Head-to-Head Comparison of the in Vivo Performance of Highly Reactive and Polar 18F-Labeled Tetrazines. Mol Pharm 2025; 22:1911-1919. [PMID: 40081392 PMCID: PMC11979891 DOI: 10.1021/acs.molpharmaceut.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
Pretargeted imaging harnessing tetrazine ligation has gained increased interest over recent years. Targeting vectors with slow pharmacokinetics may be visualized using short-lived radionuclides, such as fluorine-18 (18F) for positron emission tomography (PET), and result in improved target-to-background ratios compared to conventionally radiolabeled slowly accumulating vectors. We recently developed different radiochemical protocols enabling the direct radiofluorination of various tetrazine scaffolds, resulting in the development of various highly reactive and polar 18F-labeled tetrazines as lead candidates for pretargeted imaging. Here, we performed a direct head-to-head-comparison of our lead candidates to evaluate the most promising for future clinical translation. For that, all 18F-labeled tetrazine-scaffolds were synthesized in similar molar activity for improved comparability of their in vivo pretargeting performance. Intriguingly, previously reported dicarboxylic acid lead candidates with a net charge of -1 were outperformed by respective monocarboxylic acid derivatives bearing a net charge of 0, warranting further evaluation of such scaffolds prior to their clinical translation.
Collapse
Affiliation(s)
- Lars Hvass
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias K. Gustavsson
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Herth MM, Hvass L, Poulie CBM, Müller M, García-Vázquez R, Gustavsson T, Shalgunov V, Clausen AS, Jørgensen JT, Hansson E, Jensen H, Aneheim E, Lindegren S, Kjaer A, Battisti UM. An 211At-labeled Tetrazine for Pretargeted Therapy. J Med Chem 2025; 68:4410-4425. [PMID: 39963966 DOI: 10.1021/acs.jmedchem.4c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Pretargeted radioimmunoimaging has been shown to enhance tumor-to-background ratios by up to 125-fold at early time points, leading to more efficient and less toxic radionuclide therapies, particularly with shorter half-lives such as astatine-211 (211At). The tetrazine ligation is the most utilized bioorthogonal reaction in these strategies, making tetrazines ideal for 211At labeling and controlling the biodistribution. We developed a 211At-labeled pretargeting agent for alpha-radionuclide therapy, achieving a radiochemical yield of approximately 65% and purity over 99%. Our results showed higher tumor-to-blood ratios within the first 24 h compared to directly labeled monoclonal antibodies. This suggests that pretargeted therapy may deliver better tumor doses than conventional methods, although the deastatination observed will need to be addressed in future tetrazine developments.
Collapse
Affiliation(s)
- Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias Gustavsson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Anne S Clausen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ellinor Hansson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Holger Jensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Emma Aneheim
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Sture Lindegren
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Schlein E, Rokka J, Odell LR, van den Broek SL, Herth MM, Battisti UM, Syvänen S, Sehlin D, Eriksson J. Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET. EJNMMI Radiopharm Chem 2024; 9:21. [PMID: 38446356 PMCID: PMC10917718 DOI: 10.1186/s41181-024-00250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.
Collapse
Affiliation(s)
- Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden
| | | | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| |
Collapse
|
4
|
Schlein E, Andersson KG, Dallas T, Syvänen S, Sehlin D. Reducing neonatal Fc receptor binding enhances clearance and brain-to-blood ratio of TfR-delivered bispecific amyloid-β antibody. MAbs 2024; 16:2339337. [PMID: 38634473 PMCID: PMC11028011 DOI: 10.1080/19420862.2024.2339337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Recent development of amyloid-β (Aβ)-targeted immunotherapies for Alzheimer's disease (AD) have highlighted the need for accurate diagnostic methods. Antibody-based positron emission tomography (PET) ligands are well suited for this purpose as they can be directed toward the same target as the therapeutic antibody. Bispecific, brain-penetrating antibodies can achieve sufficient brain concentrations, but their slow blood clearance remains a challenge, since it prolongs the time required to achieve a target-specific PET signal. Here, two antibodies were designed based on the Aβ antibody bapineuzumab (Bapi) - one monospecific IgG (Bapi) and one bispecific antibody with an antigen binding fragment (Fab) of the transferrin receptor (TfR) antibody 8D3 fused to one of the heavy chains (Bapi-Fab8D3) for active, TfR-mediated transport into the brain. A variant of each antibody was designed to harbor a mutation to the neonatal Fc receptor (FcRn) binding domain, to increase clearance. Blood and brain pharmacokinetics of radiolabeled antibodies were studied in wildtype (WT) and AD mice (AppNL-G-F). The FcRn mutation substantially reduced blood half-life of both Bapi and Bapi-Fab8D3. Bapi-Fab8D3 showed high brain uptake and the brain-to-blood ratio of its FcRn mutated form was significantly higher in AppNL-G-F mice than in WT mice 12 h after injection and increased further up to 168 h. Ex vivo autoradiography showed specific antibody retention in areas with abundant Aβ pathology. Taken together, these results suggest that reducing FcRn binding of a full-sized bispecific antibody increases the systemic elimination and could thereby drastically reduce the time from injection to in vivo imaging.
Collapse
Affiliation(s)
- Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Tiffany Dallas
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Staudt M, Shalgunov V, Nedergaard M, Herth MM. Development of 11 C-labeled CRANAD-102 for positron emission tomography imaging of soluble Aβ-species. J Labelled Comp Radiopharm 2023; 66:393-399. [PMID: 37653688 DOI: 10.1002/jlcr.4060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
CRANAD-102, a selective near-infrared fluorescent tracer targeting soluble amyloid-β (Aβ) species, has recently attracted attention due to its potential to be used as a diagnostic tool for early stages of Alzheimer's disease (AD). Development of a positron emission tomography (PET) tracer based on CRANAD-102 could as such allow to noninvasively study soluble and protofibrillar species of Aβ in humans. These soluble and protofibrillar species are thought to be responsible to cause AD. Within this work, we successfully 11 C-labeled CRANAD-102 via a Suzuki-Miyaura reaction in a RCС of 48 ± 9%, with a RCP of >96% and a molar activity (Am ) of 25 ± 7 GBq/μmol. Future studies have to be conducted to evaluate if [11 C]CRANAD-102 can be used to detect soluble protofibrils in vivo and if [11 C]CRANAD-102 can be used to detect AD earlier as possible with current diagnostics.
Collapse
Affiliation(s)
- Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Bosc D. Click Reactions in Medicinal Chemistry. Pharmaceuticals (Basel) 2023; 16:1361. [PMID: 37895832 PMCID: PMC10610155 DOI: 10.3390/ph16101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Two decades after K [...].
Collapse
Affiliation(s)
- Damien Bosc
- Institute Pasteur Lille, U1177-Drugs and Molecules for Living Systems, Univsity Lille, Inserm, F-59000 Lille, France
| |
Collapse
|
7
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Pakula RJ, Scott PJH. Applications of radiolabeled antibodies in neuroscience and neuro-oncology. J Labelled Comp Radiopharm 2023; 66:269-285. [PMID: 37322805 DOI: 10.1002/jlcr.4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Positron emission tomography (PET) is a powerful tool in medicine and drug development, allowing for non-invasive imaging and quantitation of biological processes in live organisms. Targets are often probed with small molecules, but antibody-based PET is expanding because of many benefits, including ease of design of new antibodies toward targets, as well as the very strong affinities that can be expected. Application of antibodies to PET imaging of targets in the central nervous system (CNS) is a particularly nascent field, but one with tremendous potential. In this review, we discuss the growth of PET in imaging of CNS targets, present the promises and progress in antibody-based CNS PET, explore challenges faced by the field, and discuss questions that this promising approach will need to answer moving forward for imaging and perhaps even radiotherapy.
Collapse
Affiliation(s)
- Ryan J Pakula
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
10
|
ImmunoPET Directed to the Brain: A New Tool for Preclinical and Clinical Neuroscience. Biomolecules 2023; 13:biom13010164. [PMID: 36671549 PMCID: PMC9855881 DOI: 10.3390/biom13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a non-invasive in vivo imaging method based on tracking and quantifying radiolabeled monoclonal antibodies (mAbs) and other related molecules, such as antibody fragments, nanobodies, or affibodies. However, the success of immunoPET in neuroimaging is limited because intact antibodies cannot penetrate the blood-brain barrier (BBB). In neuro-oncology, immunoPET has been successfully applied to brain tumors because of the compromised BBB. Different strategies, such as changes in antibody properties, use of physiological mechanisms in the BBB, or induced changes to BBB permeability, have been developed to deliver antibodies to the brain. These approaches have recently started to be applied in preclinical central nervous system PET studies. Therefore, immunoPET could be a new approach for developing more specific PET probes directed to different brain targets.
Collapse
|