1
|
Silva TM, Oliveira ACDJ, Leão AD, Ramos RKLG, Chaves LL, Silva-Filho ECD, Soares MFDLR, Soares-Sobrinho JL. Cashew gum as future multipurpose biomacromolecules. Carbohydr Polym 2025; 347:122749. [PMID: 39486978 DOI: 10.1016/j.carbpol.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The review highlights significant advances in delivery systems, with an emphasis on the use of cashew gum (CG), a natural polysaccharide extracted from Anacardium occidentale L., recognized for its remarkable biodegradability and versatility. CG has a wide range of applications spanning sectors such as food, pharmaceuticals, agriculture, and biotechnology. This study examines research focused on the extraction, purification, and chemical modifications of CG, as well as its combination with other biopolymers to enhance physicochemical and mechanical properties. These strategies aim to optimize the gum's characteristics, allowing for the creation of innovative materials with improved performance, expanding its potential applications. This review aims to provide a comprehensive overview of recent research trends, focusing on the utilization of CG as a polymeric component in the development of biomaterials with diverse applications.
Collapse
Affiliation(s)
- Tarcísio Mendes Silva
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Antônia Carla De Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Amanda Damasceno Leão
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Luise Lopes Chaves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | | | - Monica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - José Lamartine Soares-Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil.
| |
Collapse
|
2
|
Di Nubila A, Doulgkeroglou MN, Gurdal M, Korntner SH, Zeugolis DI. In vitro and in vivo assessment of a non-animal sourced chitosan scaffold loaded with xeno-free umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions. BIOMATERIALS AND BIOSYSTEMS 2024; 16:100102. [PMID: 40225717 PMCID: PMC11993840 DOI: 10.1016/j.bbiosy.2024.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 10/08/2024] [Indexed: 04/15/2025] Open
Abstract
There is an increasing demand to not only accelerate the development of advanced therapy tissue engineered medicines, but to also eliminate xenogeneic materials from their development cycle. With these in mind, herein we first assessed the influence of carrageenan as macromolecular crowding agent to enhance and accelerate extracellular matrix deposition in xeno-free human umbilical cord mesenchymal stromal cell cultures and we developed and characterised a non-animal sourced chitosan scaffold. Following appropriate in vitro experimentation, a splinted nude mouse wound healing model was used to assess wound closure and scar size of non-treated control, non-animal sourced chitosan scaffold, non-animal sourced chitosan scaffold loaded with xeno-free human umbilical cord mesenchymal stromal cells and non-animal sourced chitosan scaffold loaded with xeno-free human umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions groups. Across all three donors, carrageenan supplementation significantly increased collagen deposition at day 5, day 8 and day 11 without affecting cell morphology, viability, DNA concentration and metabolic activity. Through freeze drying, a non-animal sourced chitosan sponge was developed with appropriate structural and mechanical properties for wound healing applications. In vitro biological analysis made apparent that neither the scaffold nor macromolecular crowding negatively impacted xeno-free human umbilical cord mesenchymal stromal cell metabolic activity and proliferation. In vivo biological analysis revealed no significant differences between the groups in wound closure and scar size, raising question about the suitability of the model. In any case, this work sets the foundations for the development of completely xeno-free tissue engineered medicines.
Collapse
Affiliation(s)
- Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Meletios-Nikolaos Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Stefanie H. Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
3
|
Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, Nasiri K, Esfahaniani M, Yasamineh S. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev Rep 2024; 20:688-721. [PMID: 38308730 DOI: 10.1007/s12015-024-10687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Arora S, Das G, Alqarni M, Grover V, Manzoor Baba S, Saluja P, Hassan SAB, Abdulla AM, Bavabeedu SS, Abullais SS, Chahal GS, Ohri A. Role of Chitosan Hydrogels in Clinical Dentistry. Gels 2023; 9:698. [PMID: 37754379 PMCID: PMC10528869 DOI: 10.3390/gels9090698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Biopolymers are organic polymers that can be treated into intricate designs with porous characteristics that mimic essential biologic components. Due to their superior biosafety, biodegradability, biocompatibility, etc., they have been utilized immensely in biomedical engineering, regeneration, and drug delivery. To obtain the greatest number of results, a literature search was undertaken in scientific search engines utilizing keywords. Chitosan is used in a variety of medical sectors, with the goal of emphasizing its applications and benefits in the clinical dental industry. Chitosan can be dissolved in liquid form and combined with other substances to create a variety of products, including fibers, hydrogels, membranes, microspheres, resins, sponges, pastes, tablets, and micro granules. Chitosan has been studied in a variety of dental applications. Chitosan is used in the prevention of caries and wear, in pulpotomy to accelerate osteogenesis in guided tissue regeneration due to its hemostatic property, and primarily to benefit from its antimicrobial activity by adding it to materials, such as glass ionomer cement, calcium hydroxide, and adhesive systems. With its antibacterial activity and biocompatibility, chitosan is leading the pack as a promising ingredient in the production of dental materials. The current review provides an update on the background, fundamentals, and wide range of uses of chitosan and its gels in dental science.
Collapse
Affiliation(s)
- Suraj Arora
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia; (M.A.); (S.M.B.); (S.A.B.H.); (S.S.B.)
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed Alqarni
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia; (M.A.); (S.M.B.); (S.A.B.H.); (S.S.B.)
| | - Vishakha Grover
- Department of Periodontology and Oral Implantology, Dr. H. S. J. Institute of Dental Sciences, Panjab University, Chandigarh 160014, India; (V.G.); (G.S.C.); (A.O.)
| | - Suheel Manzoor Baba
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia; (M.A.); (S.M.B.); (S.A.B.H.); (S.S.B.)
| | - Priyanka Saluja
- Department of Dentistry, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Saeed Awod Bin Hassan
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia; (M.A.); (S.M.B.); (S.A.B.H.); (S.S.B.)
| | - Anshad M. Abdulla
- Department of Pediatric Dentistry & Orthodontics, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia;
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia; (M.A.); (S.M.B.); (S.A.B.H.); (S.S.B.)
| | - Shahabe Saquib Abullais
- Department of Periodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Periodontics, Datta Meghe Institute of Higher Education and Research, Deemed to be University, Wardha 442001, India
| | - Gurparkash Singh Chahal
- Department of Periodontology and Oral Implantology, Dr. H. S. J. Institute of Dental Sciences, Panjab University, Chandigarh 160014, India; (V.G.); (G.S.C.); (A.O.)
| | - Anchal Ohri
- Department of Periodontology and Oral Implantology, Dr. H. S. J. Institute of Dental Sciences, Panjab University, Chandigarh 160014, India; (V.G.); (G.S.C.); (A.O.)
| |
Collapse
|
5
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
6
|
Da Cunha MR, Maia FLM, Iatecola A, Massimino LC, Plepis AMDG, Martins VDCA, Da Rocha DN, Mariano ED, Hirata MC, Ferreira JRM, Teixeira ML, Buchaim DV, Buchaim RL, De Oliveira BEG, Pelegrine AA. In Vivo Evaluation of Collagen and Chitosan Scaffold, Associated or Not with Stem Cells, in Bone Repair. J Funct Biomater 2023; 14:357. [PMID: 37504852 PMCID: PMC10381363 DOI: 10.3390/jfb14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Natural polymers are increasingly being used in tissue engineering due to their ability to mimic the extracellular matrix and to act as a scaffold for cell growth, as well as their possible combination with other osteogenic factors, such as mesenchymal stem cells (MSCs) derived from dental pulp, in an attempt to enhance bone regeneration during the healing of a bone defect. Therefore, the aim of this study was to analyze the repair of mandibular defects filled with a new collagen/chitosan scaffold, seeded or not with MSCs derived from dental pulp. Twenty-eight rats were submitted to surgery for creation of a defect in the right mandibular ramus and divided into the following groups: G1 (control group; mandibular defect with clot); G2 (defect filled with dental pulp mesenchymal stem cells-DPSCs); G3 (defect filled with collagen/chitosan scaffold); and G4 (collagen/chitosan scaffold seeded with DPSCs). The analysis of the scaffold microstructure showed a homogenous material with an adequate percentage of porosity. Macroscopic and radiological examination of the defect area after 6 weeks post-surgery revealed the absence of complete repair, as well as absence of signs of infection, which could indicate rejection of the implants. Histomorphometric analysis of the mandibular defect area showed that bone formation occurred in a centripetal fashion, starting from the borders and progressing towards the center of the defect in all groups. Lower bone formation was observed in G1 when compared to the other groups and G2 exhibited greater osteoregenerative capacity, followed by G4 and G3. In conclusion, the scaffold used showed osteoconductivity, no foreign body reaction, malleability and ease of manipulation, but did not obtain promising results for association with DPSCs.
Collapse
Affiliation(s)
- Marcelo Rodrigues Da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil
| | | | - Amilton Iatecola
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Lívia Contini Massimino
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), São Carlos 13566-590, Brazil
| | | | | | | | | | | | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | | |
Collapse
|
7
|
de Sousa Ferreira M, de Oliveira Silva Ribeiro F, Dourado FF, de Jesus Oliveira AC, Araújo TDS, Brito LM, Pessoa C, de Lima LRM, de Paula RCM, Silva-Filho EC, da Silva DA. Production of galactan phthalates derivatives extracted from Gracilaria birdie: Characterization, cytotoxic and antioxidant profile. Int J Biol Macromol 2023; 243:125254. [PMID: 37295699 DOI: 10.1016/j.ijbiomac.2023.125254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The present work explores the esterification reaction in the polysaccharide extracted from the seaweed Gracilaria birdiae and investigates its antioxidant potential. The reaction process was conducted with phthalic anhydride at different reaction times (10, 20 and 30 min), using a molar ratio of 1:2 (polymer: phthalic anhydride). Derivatives were characterized by FTIR, TGA, DSC and XRD. The biological properties of derivatives were investigated by assays of cytotoxicity and antioxidant activity (2,2-diphenyl-1-picrylhydroxyl - DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt - ABTS). The results obtained by FT-IR confirmed the chemical modification, there was a reduction related to the presence of carbonyl and hydroxyl groups when compared to the in nature polysaccharide spectrum. TGA analysis showed a change in the thermal behavior of the modified materials. X-ray diffraction, it was shown that the in nature polysaccharide appeared as an amorphous material, while the material obtained after the chemical modification process had increased crystallinity, due to the introduction of phthalate groups. For the biological assays, it was observed that the phthalate derivative was more selective than the unmodified material for the murine metastatic melanoma tumor cell line (B16F10), revealing a good antioxidant profile for DPPH and ABTS radicals.
Collapse
Affiliation(s)
- Michelle de Sousa Ferreira
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, Brazil
| | - Flaviane França Dourado
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Antônia Carla de Jesus Oliveira
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Thaís Danyelle Santos Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Lucas Moreira Brito
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | | | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil.
| |
Collapse
|
8
|
da Rocha LBN, Sousa RB, Dos Santos MVB, Neto NMA, da Silva Soares LL, Alves FLC, de Carvalho MAM, Osajima JA, Silva-Filho EC. Development of a new biomaterial based on cashew tree gum (Anarcadium occidentale L.) enriched with hydroxyapatite and evaluation of cytotoxicity in adipose-derived stem cell cultures. Int J Biol Macromol 2023; 242:124864. [PMID: 37192713 DOI: 10.1016/j.ijbiomac.2023.124864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Cashew tree gum is a polysaccharide material highly available in the Northeast region of Brazil. It has been explored for biocompatibility with human tissues. This research aimed to describe the synthesis and characterization of cashew gum/hydroxyapatite scaffold and evaluate the possible cytotoxicity in murine adipo-derived stem cells (ADSCs) cultures. ADSCs of the subcutaneous fat tissue of Wistar rats were collected, isolated, expanded, differentiated into three strains, and characterized immunophenotypically. The scaffolds were synthesized through chemical precipitation, lyophilized and characterized through scanning electron microscopy (SEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis (TG and DTG), and mechanical testing. The scaffold presented a crystalline structure and pores with an average diameter of 94.45 ± 50.57 μm. By mechanical tests, the compressive force and modulus of elasticity were like the cancellous bone. The isolated adipose-derived stem cells (ADSCs) presented fibroblast morphology, adhesion capacity to plastic, differentiation in osteogenic, adipogenic and chondrogenic lineages, positive expression for the CD105 and CD90 markers and negative expression for the CD45 and CD14 markers. The MTT test showed increased cell viability, and the biomaterial showed a high level of hemocompatibility (<5 %). This study allowed the development of a new scaffold for future surgical applicability in tissue regeneration.
Collapse
Affiliation(s)
| | - Ricardo Barbosa Sousa
- Federal Institute of Education, Science, and Technology of Tocantins, Campus Araguaina, 56, Amazonas Avenue, 77826-170 Araguaina, TO, Brazil; Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
| | | | | | | | | | | | - Josy Anteveli Osajima
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| | - Edson C Silva-Filho
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| |
Collapse
|