1
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
2
|
An H, Qiu X, Wang X, Du C, Guo X, Hou S, Xu M, Wang J, Cheng C, Ran H, Li P, Wang Z, Zhou Z, Ren J, Jiang W. LIFU-unlocked endogenous H 2S generation for enhancing atherosclerosis-specific gas-enzymatic therapy. Biomaterials 2025; 315:122972. [PMID: 39591768 DOI: 10.1016/j.biomaterials.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Atherosclerotic plaques, which are characterized by endothelial oxidative stress, lipid metabolism disorders and persistent inflammation, can induce serious cardiovascular diseases. However, the pharmacotherapies currently used to treat atherosclerosis (AS), such as lipid-lowering and antithrombotic drugs, can regulate only a single pathological feature of AS, and there is still a dearth of integrated platforms for the multifaceted regulation of AS progression. Herein, we developed a synergistic combination of endogenous H2S gas therapy with a multienzyme-like nanozyme (named LyP-1Lip@HS) for the treatment of AS. The high affinity of the LyP-1 peptide for macrophages and foam cells within plaques allows LyP-1Lip@HS to actively target atherosclerotic lesions. After cavitation was induced by low-intensity focused ultrasound (LIFU), the lipid membrane of LyP-1Lip@HS was disrupted, thereby "unlocking" the enzyme-like activity of hollow mesoporous Prussian blue (HMPB) and facilitating the release of the endogenous H2S donor S-allyl-L-cysteine (SAC). Notably, H2S endogenously generated by enzymatic catalysis plays multiple roles, upregulating the ATP-binding cassette transporter A1 in foam cells to increase lipid efflux and promote the conversion of M1 macrophages to M2 macrophages. Moreover, the high level of reactive oxygen species in the inflammatory microenvironment of the plaque was mitigated. Overall, LyP-1Lip@HS provides a specific and controlled treatment to prevent oxidative stress, inflammation and lipid metabolism disorders, making it a candidate for AS treatment.
Collapse
Affiliation(s)
- Hongjin An
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xiaoling Qiu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xiaoting Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Chier Du
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Shengzhe Hou
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Min Xu
- Department of Cardiac Ultrasound, Chengdu Third People's Hospital, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610000, PR China
| | - Jingxue Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Pan Li
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhiyi Zhou
- Department of General Practice, Chongqing General Hospital, Chongqing, 400010, PR China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| | - Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
3
|
Yıldız F, LeBaron TW, Alwazeer D. A comprehensive review of molecular hydrogen as a novel nutrition therapy in relieving oxidative stress and diseases: Mechanisms and perspectives. Biochem Biophys Rep 2025; 41:101933. [PMID: 39911528 PMCID: PMC11795818 DOI: 10.1016/j.bbrep.2025.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Oxidative stress is responsible for the pathogenesis of many diseases, and antioxidants are commonly included in their treatment protocols. Over the past two decades, numerous biomedical reports have revealed the therapeutic benefits of molecular hydrogen (H2) in relieving oxidation-related diseases. H2 has been found to have selective antioxidant properties against the most dangerous oxidants (hydroxyl radicals and peroxynitrite). H2 demonstrates numerous biologically therapeutic properties, including anti-inflammatory, antioxidant, anti-cancer, anti-stress, anti-apoptotic, anti-allergic effects, signaling molecule functions, regulation of redox balance, modulation of antioxidant enzyme gene expression, improvement of blood vessel function, down-regulation of pro-inflammatory cytokines, stimulation of energy metabolism, and protection of the nervous system. Experimental and clinical studies have shown the potential use of hydrogen nutrition therapy for ameliorating various diseases, including cardiovascular, respiratory, and metabolic disorders, as well as obesity, gastrointestinal disorders, and brain and nervous system disorders. The administration methods of hydrogen include inhalation, hydrogen-rich water, hydrogen-rich saline, hydrogen-rich eye drops, and hydrogen-rich bathing. Hydrogen nutritional therapy can be applied to different diseases, and it offers a natural alternative to chemical and radiation therapies. This review covers the different administration methods and the latest experimental and clinical research on the potential applications of H2 in nutritional therapy for different diseases.
Collapse
Affiliation(s)
- Fatmanur Yıldız
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Türkiye
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000, Iğdır, Türkiye
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, 84720, USA
- Molecular Hydrogen Institute, Cedar City, UT, 84721, USA
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Türkiye
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000, Iğdır, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Türkiye
| |
Collapse
|
4
|
Mu G, Chen S, Chen X, Li Q, Lu B, Yu X. Hydrogen regulated pyroptosis through NLRP3-GSDMD pathway to improve airway mucosal oxidative stress injury induced by endotracheal tube cuff compression. Free Radic Biol Med 2024; 224:287-300. [PMID: 39216558 DOI: 10.1016/j.freeradbiomed.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The cuff of endotracheal tube (ETT) is an indispensable device for establishing an artificial airway, yet cuff-induced compression often causes damage to the airway mucosa. The mechanism of this damage involves mucosal compression ischemia and the oxidative stress injury following reperfusion. Currently, there is a lack of effective strategies to protect the mucosa. Hydrogen, as a natural antioxidant, has demonstrated significant potential in the prevention and treatment of oxidative stress injuries. This study aimed to determine the protective effects of hydrogen on compressed airway mucosa. We found that the damage to the airway mucosa caused by ETT cuff compression was associated with oxidative stress-induced pyroptosis of airway epithelial cells. Inhalation of hydrogen effectively reduced the levels of reactive oxygen species, significantly ameliorating changes in epithelial cell pyroptosis, and this protective effect is linked to the inhibition of the NLRP3-GSDMD pathway. Further cellular studies, involving knockdown and overexpression of NLRP3, clarified that hydrogen exerts its protective effects on the airway mucosa by inhibiting epithelial cell pyroptosis. Additionally, we observed that using hydrogen-rich saline to inflate the ETT cuff in patients under general anesthesia significantly reduced postoperative sore throat. This study confirms that hydrogen effectively enhances tolerance of airway mucosa to oxidative stress injuries, offering a potential preventive and therapeutic strategy for protecting the airway mucosa in patients undergoing endotracheal intubation.
Collapse
Affiliation(s)
- Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China; Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 643000, China
| | - Shuai Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 643000, China
| | - Xinyu Chen
- Chuanbei Medical College, Nangchong, Sichuan, 634700, China
| | - Qiang Li
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China
| | - Bin Lu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China.
| | - Xuan Yu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 643000, China.
| |
Collapse
|
5
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
6
|
Tsou SH, Lin SC, Chen WJ, Hung HC, Liao CC, Kornelius E, Huang CN, Lin CL, Yang YS. Hydrogen-Rich Water (HRW) Reduces Fatty Acid-Induced Lipid Accumulation and Oxidative Stress Damage through Activating AMP-Activated Protein Kinase in HepG2 Cells. Biomedicines 2024; 12:1444. [PMID: 39062020 PMCID: PMC11274623 DOI: 10.3390/biomedicines12071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive fat accumulation in the liver. Intracellular oxidative stress induced by lipid accumulation leads to various hepatocellular injuries including fibrosis. However, no effective method for mitigating MASLD without substantial side effects currently exists. Molecular hydrogen (H2) has garnered attention due to its efficiency in neutralizing harmful reactive oxygen species (ROS) and its ability to penetrate cell membranes. Some clinical evidence suggests that H2 may alleviate fatty liver disease, but the precise molecular mechanisms, particularly the regulation of lipid droplet (LD) metabolism, remain unclear. This study utilized an in vitro model of hepatocyte lipid accumulation induced by free fatty acids (FFAs) to replicate MASLD in HepG2 cells. The results demonstrated a significant increase in LD accumulation due to elevated FFA levels. However, the addition of hydrogen-rich water (HRW) effectively reduced LD accumulation. HRW decreased the diameter of LDs and reduced lipid peroxidation and FFA-induced oxidative stress by activating the AMPK/Nrf2/HO-1 pathway. Overall, our findings suggest that HRW has potential as an adjunctive supplement in managing fatty liver disease by reducing LD accumulation and enhancing antioxidant pathways, presenting a novel strategy for impeding MASLD progression.
Collapse
Affiliation(s)
- Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Sheng-Chieh Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Orthopaedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Jen Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chun-Cheng Liao
- Department of Family Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan;
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Chien-Ning Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chih-Li Lin
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| |
Collapse
|
7
|
Nakayama M, Kabayama S, Miyazaki M. Application of Electrolyzed Hydrogen Water for Management of Chronic Kidney Disease and Dialysis Treatment-Perspective View. Antioxidants (Basel) 2024; 13:90. [PMID: 38247514 PMCID: PMC10812465 DOI: 10.3390/antiox13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic kidney disease (CKD), which is globally on the rise, has become an urgent challenge from the perspective of public health, given its risk factors such as end-stage renal failure, cardiovascular diseases, and infections. The pathophysiology of CKD, including dialysis patients, is deeply associated with enhanced oxidative stress in both the kidneys and the entire body. Therefore, the introduction of a safe and widely applicable antioxidant therapy is expected as a measure against CKD. Electrolyzed hydrogen water (EHW) generated through the electrolysis of water has been confirmed to possess chemical antioxidant capabilities. In Japan, devices producing this water have become popular for household drinking water. In CKD model experiments conducted to date, drinking EHW has been shown to suppress the progression of kidney damage related to hypertension. Furthermore, clinical studies have reported that systemic oxidative stress in patients undergoing dialysis treatment using EHW is suppressed, leading to a reduction in the incidence of cardiovascular complications. In the future, considering EHW as one of the comprehensive measures against CKD holds significant importance. The medical utility of EHW is believed to be substantial, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Kidney Center, St. Luke’s International Hospital, Tokyo 104-8560, Japan
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
| | - Shigeru Kabayama
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
- Nihon Trim Co., Ltd., Osaka 530-0001, Japan
| | - Mariko Miyazaki
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| |
Collapse
|
8
|
Obara T, Naito H, Nojima T, Hirayama T, Hongo T, Ageta K, Aokage T, Hisamura M, Yumoto T, Nakao A. Hydrogen in Transplantation: Potential Applications and Therapeutic Implications. Biomedicines 2024; 12:118. [PMID: 38255223 PMCID: PMC10813693 DOI: 10.3390/biomedicines12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation.
Collapse
Affiliation(s)
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (T.N.); (T.H.); (T.H.); (K.A.); (T.A.); (M.H.); (T.Y.); (A.N.)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cheng D, Long J, Zhao L, Liu J. Hydrogen: A Rising Star in Gas Medicine as a Mitochondria-Targeting Nutrient via Activating Keap1-Nrf2 Antioxidant System. Antioxidants (Basel) 2023; 12:2062. [PMID: 38136182 PMCID: PMC10740752 DOI: 10.3390/antiox12122062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The gas molecules O2, NO, H2S, CO, and CH4, have been increasingly used for medical purposes. Other than these gas molecules, H2 is the smallest diatomic molecule in nature and has become a rising star in gas medicine in the past few decades. As a non-toxic and easily accessible gas, H2 has shown preventive and therapeutic effects on various diseases of the respiratory, cardiovascular, central nervous system, and other systems, but the mechanisms are still unclear and even controversial, especially the mechanism of H2 as a selective radical scavenger. Mitochondria are the main organelles regulating energy metabolism in living organisms as well as the main organelle of reactive oxygen species' generation and targeting. We propose that the protective role of H2 may be mainly dependent on its unique ability to penetrate every aspect of cells to regulate mitochondrial homeostasis by activating the Keap1-Nrf2 phase II antioxidant system rather than its direct free radical scavenging activity. In this review, we summarize the protective effects and focus on the mechanism of H2 as a mitochondria-targeting nutrient by activating the Keap1-Nrf2 system in different disease models. In addition, we wish to provide a more rational theoretical support for the medical applications of hydrogen.
Collapse
Affiliation(s)
- Danyu Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|